
ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
December 2016,

Vol. 9, No. (3):
Pgs. 186-193

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

Testing of Multithreaded Code under
Deterministic and Predictable Environment

Mohammed Alghamdi2, Mohammed Alrifai2, Khalil Alsulbi2,
Wadee Alhalabi3 and Moustafa Mahmoud Yousry1*

1Department of Production Engineering, Faculty of Engineering, Alexandria University, Egypt.
2Master of Computer Science, King Abdulaziz University, Saudi Arabia.

3Professor of Computer Science, King Abdulaziz University, King Abdulaziz University, Saudi Arabia.
*Corresponding author E-mail: eng_moustafaa@hotmail.com; Tel.: +201008227507

http://dx.doi.org/10.13005/ojcst/09.03.04

(Received: December 15, 2016; Accepted: December 25, 2016)

Abstract

	 This report focuses on the execution of multithreaded programs and finding bugs and errors
in those programs. Testing is done to determine if the code written runs correctly or not. The report
also covers comparison of traditional testing tools with the new and efficient systematic testing tool
called CHESS. The repost explains in detail about the testing technique of CHESS including how
it identifies and handles bugs in multithreaded programs. The various experiments performed using
different outputs have also been discussed and their respective results have also been shown in
order to determine the behavior of CHESS tool when it is provided random inputs. Using this input
did not lead to non-deterministic test and the execution time increases exponentially.

Keywords: Multithreaded, CHESS, Software testing, Operating system, Concurrently.

Introduction

	 Multithreading is the ability of an
operating system to run programs concurrently
that are divided into sub parts or threads. It is
similar to multitasking but instead of running on
multiple processes concurrently, multithreading
allows multiple threads in a process to run at the
same time. Threads are more basic and smaller
unit of instruction. Hence multithreading can occur
within a single process. Multithreading can also
be defined as a combination of microprocessor

design and machine code which allows computer
instructions to be carried out concurrently and
the results to be combined in right logical order.
Programs can execute multiple tasks simultaneously
by incorporating multithreading. The real purpose
of multithreading is to help in proper and resource
effective utilization of the hardware and software
resources. Multithreading provides concurrency
as it enables many programs to run in parallel
and execute simultaneously thus saving time and
providing efficiency (Ball T. (2011)).

187 Yousry et al., Orient. J. Comp. Sci. & Technol., Vol. 9(3), 186-193 (2016)

	 Operating systems are running multiple
threads at one time in background, for example,
logging file changes, indexing data and managing
the operating systems. At the same time, web
browsers also support multithreading. Users can
open multiple web pages running animations
in different tabs in a web browser concurrently.
Multiple threads running simultaneously don’t affect
each other as long as the CPU has enough power to
run all of them. Multithreading adds stability to the
programs and prevent it from crashing. All threads
run independently. So if an error is encountered by
a thread, it should not affect rest of the program.
It allows better utilization of the processor and
other system resources (Blumofe R. (1996)).

	 The paper examines how the chess
system works to effectively to ensure the effective
testing of the concurrent software. The paper
will go into details on the methodology chapter
and the discussion part to discuss more on the
multithreaded scenario, findings and discussion.

Proposed Work
	 The execution of multithreaded programs
is pretty much complicated and tricky because
of high probability of encountering unpredictable
and erratic interference among concomitantly
running programs. Writing, testing and debugging
multithreaded programs is, therefore, not an easy
task and requires a lot of hardwork, input and
attention of the developer. Certain challenges
are faced while testing multithreaded programs
such as the lack of control over which schedule has
to be executed each time a program is run. Another
challenge is systems having non-deterministic
scheduler which causes the system to be unable
to predict output as there are so many outcomes
for each input, thus the system fails to predict and
generate the accurate output (Rinard M. (2001)).

	 Unfor tunately the standard testing
techniques are not efficient and reliable as they
just cover some fraction of schedules and many
schedules are left untested in such traditional
testing methods. This drawback of traditional testing
can lead to a software bug called Heisenbugs which
is an unusual kind of bug that changes its behavior
or vanish when it is observed or studied. This bug is
of very unpredictable time and it may disappear or

change its form when attempts are made to debug
it. These types of bugs appear rarely and are very
difficult to handle and debug (Farchi E. (2003)). The
basic purpose of this work is to provide different
inputs to a multithreaded program and run large
number of threads on CHESS to test how Chess
handles multithreaded codes and what kind of
results are generated.

Tool Used
	 The tool that is most commonly used
for testing parallel execution of multiple programs
in a predictable and progressive manner is called
Checker for System Software (Chess). It is a
systematic tool designed for testing software’s
having concurrent multithreaded programs. The
Chess testing tool tests software’s that carry out
programs concomitantly in order to check if the
programs are running in a right manner or not
and also to determine whether correct output is
being generated or not. This testing tool employs
model checking methods to produce all possible
interleaving results of a particular situation. Chess
is capable of testing large number of programs that
are executing concurrently and is able to detect
many unexpected and unfamiliar bugs in a system
which otherwise may remain unnoticed by standard
testing techniques.

	 Chess repetitively executes a multithreaded
program and ensures providing a predictable and
deterministic schedule. It also ensures covering
all schedules and even more so that all bugs and
errors in the programs are identified quickly. The tool
works in an iterative fashion such that a program
is executed repeatedly and in each execution, a
different thread schedule is followed. It works
in loop where all iterations of the loop takes a
different interleaving and is repeatable. Whenever
a bug’s presence is identified in a program,
Chess constantly keeps on producing erroneous
execution repeatedly which makes the presence
of bug in the program more obvious and thus it
becomes easier to debug. Many software’s use

188Yousry et al., Orient. J. Comp. Sci. & Technol., Vol. 9(3), 186-193 (2016)

Chess for testing purposes and it is incorporated
in the test frameworks of basic code of many
programs.

A Multithreaded Scenario
	 Let’s consider the scenario of a bank
account involving implementation of a multithreaded
program. The program consists of a class named
Test Account which contains a method called Run.
The Run method is to test another class called
Account in a multithreaded fashion. Consider an
instance of class Account with value $10. Then
consider a child thread in which $2 are being
withdrawn from the account. The main thread
starts the child thread and two operations are
being performed concurrently on the account; one
is withdrawing $2 from the account and the other
is depositing $1 in the account. The main thread
then waits for the child thread to complete. Since
the two operations that are withdrawal and deposit
of money are executing in parallel so when we will
withdraw $2 from the account, $8 will be left in the
account but at the same time we are also depositing
$1 in the account therefore the expected amount
to be present in the account at the end is $9 but it
is not so. The program is giving an incorrect result
which says that the account will be having $11 at
the end of execution because of some error in the
threading code. The reason of generation of this
incorrect result is the complexity of multithreaded
programs. In the given scenario, what actually
happening is that the main thread is executing both
operations; withdraw and deposit in parallel. The
main thread starts the Withdraw operation of child
thread and this operation reads the current value
of the account that is $10 and stores this value in
temp. The main thread also executes the Deposit
operation simultaneously in which $1 is added to
the account. Since the child thread is not completed
yet so the account’s value is still $10 and deposit
of $1 to the account changes to the account value
to $11. The control then returns to the child thread
and using the value stored in temp that is $10, $2
are deducted from it and the child execution leads
to an inaccurate value of the account balance $8
which is actually supposed to be $9.

	 This error would not have occurred if the
child thread had locked the account so that some
other thread does not interfere and access the

account meanwhile and would not have been
able change the value in Account. The presence
of this error lead to an instable value in account.
Now let’s apply both traditional testing method and
chess testing method on this scenario so that we
can 3 compare results of both testing methods and
conclude which one is better.

Testing using Traditional Method
	 Traditional testing methods do not go
through all possible schedules of multithreaded
programs and are nondeterministic which means
they may end up producing different random
outputs for the same input thus leading to an
instable result. When multiple threads are running
concurrently, their executions interrupt each other
and the intensity of interruption depends on the
processing speed of the system on which they are
being carried out and also on the state of memory
and cache. In case of single processor system, a
particular time slot is allocated to each thread by
thread scheduler. When time slot of a particular
thread is expired, resources are preempted from
that thread and its execution is suspended till it
gets the next time slot for complete execution and
the execution of the next thread is started. This
type of preemption of resources from thread and
suspension of its execution can happen anywhere
in the code of threads. The allocation of time slots to
threads by thread scheduler is not accurate and
can lead to nondeterministic scheduling of multiple
threads.

	 When traditional testing method is applied
to the previously described scenario, we observe
that they are unable to predict correct results and
unable to find bugs in multithreaded programs
since they do not cover all thread schedules. They
do not guarantee trying all schedules even if the test
is run forever that means they would not execute
all schedules ever no matter what because even
the operating system scheduler does not provide
guarantee of covering all schedules.

Testing using Chess
	 There is a Chess Scheduler in Chess
which is called by default at the start and end of
execution of each thread. Whenever a thread starts,
Chess makes a call to the Chess Scheduler which
simple serves to provide delays in the program so

189 Yousry et al., Orient. J. Comp. Sci. & Technol., Vol. 9(3), 186-193 (2016)

that some gaps can occur between the starting
and ending of two threads in order to avoid their
interference with each other but this technique is
not an efficient as it does not provide deterministic
scheduling (Musuvathi M. (2007)). Deterministic
scheduling is guaranteed by selective blocking
of threads in which Chess blocks threads in such
a way that only one thread is running at a time
while the others are blocked so that they do not
execute at that particular moment. This provides
a serialized execution of threads that is one after
the other and ensures no interference of threads
with each other and successfully eliminates non-
deterministic schedules that were being generated
by the operating system schedulers and hardware.
Chess monitors the actions performed by thread
which is running at the moment such as system
calls, synchronizations etc and thus keep a check
on when to block this thread and start executing
the next one. This approach, however, reduces
concurrency which can be overcome by running
multiple instances concomitantly having each
instance to explore different section of the same
test schedule. Therefore the Chess Scheduler uses
wait and release operations to organize sequence

of threads with smooth and uninterrupted execution.
The wait operation keeps a thread blocked until
some other thread performs the release operation.
In a multithreaded program, Chess carries out
the child thread first while keeping the main thread
blocked which remains on waiting state until the
child thread is executed completely. Then after
execution of child thread, Chess releases the main
thread and blocks the child thread through wait
instruction. Thus Chess testing technique provides
deterministic scheduling.

	 Consider running chess on the program
discussed previously that has a TestAccount class
which in turn has a Run method. The run method
does not contain any parameter, it simply runs the
test and produces result in Boolean form that is
true if the test is successful and vice versa. The
run method is executed repeatedly by the Chess
testing technique and in each execution of the run;
a different thread schedule is used. The repeated
executions using different thread schedules by
Chess enables identification of those thread
schedules which can cause bugs and errors in the
program. Chess supports deterministic way so we

Table 1: The Execution time to find multithreading error in
second using 2 threads, 15 execution steps and 3 tests

Table 2: The Execution time to find multithreading error in
second using 4 threads and 42 execution steps and 39 tests

190Yousry et al., Orient. J. Comp. Sci. & Technol., Vol. 9(3), 186-193 (2016)

will get the same output for a particular thread
schedule each time we run it.

	 In the bank account scenario, Chess
provides a sequence of wait and release operations
so that the when one thread is being carried out;
the other thread waits and does nor execute
unless the first thread releases the resource it
was holding. In this way, concurrently executing
operations do not interrupt each other and can
work smoothly producing a stable output.

	 When Chess finds a bug in the program, it
saves the depiction of the thread schedule in disk,
which caused this bug. Then following the same
thread schedule for running a program, chess can
reproduce the bug. In case of failure of a test, the

thread schedule stored in disk by Chess can be used
to regenerate that schedule which actually caused
error and lead to failure. This schedule can then
be debugged and whenever the test fails, Chess
will check this schedule and debug it in order
to fix the program. This provides efficiency as the
debugging of a multithreaded program is reduced
and instead of debugging all thread schedules, only
the error-causing schedule is debugged.

Experiment

	 We carried out number of experiments
using different number of threads in each experiment
in order to determine the behavior pattern of
results and to check out how Chess handles
and identifies bugs in multithreaded programs. We

Fig. 1: The Execution time to find multithreading error in second
using 2 threads, 15 execution steps and 3 tests

Fig. 2: The Execution time to find multithreading error in second
using 4 threads and 42 execution steps and 39 tests

191Yousry et al., Orient. J. Comp. Sci. & Technol., Vol. 9(3), 186-193 (2016)

Fig.3: The Execution time to find multithreading error in second
using 8 threads and 78 execution steps and 87 tests

Fig.4: The Execution time to find multithreading error in second
using 16 threads and 150 execution steps and 183 tests

added more threads in the multithreaded program
by using random function in C# testing code. This
can be done by simply adding the C# statement
random. NextDouble to the original testing input
code.

	 In the experiment, there are attempts
to add more threads using the random functions
in C# testing code from the original paper. The
experimentation is possible through the injection of
the C# statement randomly. From there, doubling of
the original testing code for inputs is necessary to
ensure accuracy. Then, there is the multiplication

of the number of experiments using a companion
of four amounts of the available threads and four
ranges of some random values. Ultimately, the
companion produces sixteen experiments.

Results and Findings
	 The following results were obtained after
re-running the threads again and again using
random inputs. As table 1,2,3,4 figure 1,2,3,4 shows
the observation was that the behavior pattern
remains the same and the same output is generated
for each run irrespective of the number of times a
thread is executed.

192Yousry et al., Orient. J. Comp. Sci. & Technol., Vol. 9(3), 186-193 (2016)

Table 4: The Execution time to find multithreading error in second
using 16 threads and 150 execution steps and 183 tests

Table 3: The Execution time to find multithreading error in second
using 8 threads and 78 execution steps and 87 tests

193Yousry et al., Orient. J. Comp. Sci. & Technol., Vol. 9(3), 186-193 (2016)

Conclusions

	 Chess is capable of exploring all
schedules that may range up to thousand or more
and thus it is able to find errors in a program while
other testing tools do not check all schedules and
will therefore be unable to detect bugs in a program.
Chess testing mechanism can be applied by
inserting the ChessSchedulerClass at the beginning
and end of each thread in the original test code.
This class enables efficient checking of bugs in
each thread. Chess is capable of blocking threads
and providing serialized execution of threads so
that they do not interfere with each other and do
not produce invalid outputs.

	 After performing the various experiments
and from the results obtained, we claim that CHESS
is a proficient multithreading testing tool that can
find bugs in multithreaded programs quickly and
efficiently. Random input values were given to the
tool and the same thread was executed repeatedly
with those random values but it did not lead to
any non-deterministic output. The test rather ran
in a productive fashion and successfully detected
bugs in the code thus CHESS provides predictive
and progressive testing for multithreaded codes.
There is a significant increase in the in the number
of executions causing the experiments to take
long than expected. Therefore, the results represent
typical considerations in the multithreading
scenario.

References

1.	 Ball, T., Burckhardt, S., de Halleux, P.,
Musuvathi, M., & Qadeer, S., “Predictable
and Progressive Testing of Multithreaded
Code,” IEEE Software, 28(3), (2011).

2.	 Blumofe, R., Joerg, C., Kuszmaul, B.,
Leiserson, C., R, all, K., & Zhou, Y.,
“Cilk: An efficient multithreaded runtime
system,” Journal Of Parallel And Distributed
Computing, 37(1), 55-69, (1996).

3.	 Farchi, E., Nir, Y., & Ur, S. (2003),
“Concurrent bug patterns and how to test
them,” 7.

4.	 Jagannath, V., Gligoric, M., Jin, D., Rosu,
G., & Marinov, D. (2010), “IMUnit: improved
multithreaded unit testing,” 48-49.

5.	 Musuvathi, M., & Qadeer, S., “CHESS:
Systematic stress testing of concurrent
software,” Springer, 15-16, (2007).

6.	 Musuvathi, M., & Qadeer, S. (2007),
“Iterative context bounding for systematic
testing of multithreaded programs,” 42(6),
446-455.

7.	 Rinard, M., “Analysis of multithreaded
programs,” Springer, 1-19, (2001).

8.	 Sen, K., Rocsu, G., & Agha, G., “Detecting
errors in multithreaded programs by
generalized predictive analysis of executions,”
Springer, 211-226, (2005).

9.	 Sen, K., Rosu, G., & Agha, G., “Runtime
safety analysis of multithreaded programs,”
28(5), 337-346, (2003).

10.	 Souza, S., Brito, M., Silva, R., Souza, P., &
Zaluska, E. (2011), “Research in concurrent
software testing: a systematic review,” 1-5.

