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ABSTRACT

 Brain computer interface (BCI) is relatively new technology aiming at assisting, augmenting, or 
repairing human cognitive or sensory-motor functions. Recent advances in bio-signal processing as 
well as advances in neuro-imaging techniques have boosted BCI development.  The most important 
barrier in developing BCI technology is currently the lack of a sensor modality that provides safe, 
accurate and robust access to brain signals. However, recent advances in biosensor technology, 
signal processing and new insights into association between EEG-based measures and mental 
states and advances in high resolution EEG measurements have dramatically revolutionized the BCI 
development.  The present study reviews the basic principles of BCI, recent advances and future 
directions of the technology.
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INTROdUCTION 

 A brain–computer interface (BCI), 
brain–machine interface (BMI), mind-machine 
interface  (MMI), direct neural interface (DNI) is a 
direct communication between the brain and an 
external device without any peripheral muscular 
activity. BCIs are often directed at assisting, 
augmenting, or repairing human cognitive or 
sensory-motor functions.

 In BCI  a  subject  sends  commands  to  
an electronic  device  through  brain  activity  without 
any  peripheral  muscular  activity(1-3).  Such 

systems can help patients with motor disabilities 
(4, 5).  To  control  a  BCI,  the  user  should  
produce  various brain  activity  patterns  which  are  
captured  in  form  of Electroencephalogram  (EEG)  
and  converted  to  commands by identifying the 
patterns by the system. In most BCIs, identification  
of  pattern  is  based  on  a  classification algorithm,  
i.e.,  an  algorithm  that  automatically estimates  the  
class  of  data  represented  by  a  feature  vector 
of the EEG(6-10). Schematic diagram of a typical 
BCI is presented in figure 1. EEG based BCIs have 
shown various potentials in different fields including 
rehabilitation medicine, robotic, space and high 
technology fields. The main field of EEG-based 
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BCI is developing classification algorithms. Several 
paradigms have been developed and evaluated for 
constructing EEG-based BCI systems during the 
last 20 years(11-18). The paradigms vary a wide 
range including standard and typical ones such as 
stimuli-response EEG patterns, biofeedback (BF), 
to complicated paradigms using sophisticated 
machine learning algorithms to classify the 
EEG. Each approach has its advantages and 
disadvantages. BCI system building paradigms 
use specific changes in EEG which are induced 
by controlled external stimuli. These modifications 
in EEG are called evoked potentials since they are 
induced by an external stimulus.  For  example,  
many  BCI  systems  were built  that  utilized  
Steady-State  Visually  Evoked  Potentials (SSVEP)  
which  is  elicited  by  exposing visual stimulus of 
a box/checkerboard flickering steadily on  an  lCD  
screen while  the  subject  gazes on the monitor.  A  
corresponding  power  increase  is  identified  in the  
subject’s  EEG  at  the  same  frequency  as well as 
in  the harmonic  frequencies of flickering. SSVEP  
can  control  a computerized device by flickering 
many different stimuli at various rates while at the 
same time allowing a user to shift his/her  gaze  
between  different  stimuli (19-21).  BCI  systems 
operating  proved  to  be  effective,  with  research 
suggesting  that  an  SSVEP  speller  system  can 
be constructed which  achieves information  transfer  
rates  as  high  as  62.5  bits  per  minute (bpm) with 
minimum user training(22-24) . 

 Another evoked potential (EP) measure 
commonly used for constructing BCI systems is 
the P300. It is an EP that occurs after presentation 
of rare-but-expected stimulus.  The  P300  is called  
so  as  it  appears  in  EEG  signals  as  a  positive 
deflection  with approximate delay of  300ms  
following the  stimulus  onset.  An example  of  BCI  
system  utilizing  the  P300  is  the  P300 speller, 
where a grid of numbers/letters is shown to the user 
on  an lCD  screen.  Rows and columns of this grid 
are flashed pseudo-randomly. A P300 is evoked 
when the user attends  to  a  single  character  in  
the  grid,  as  the  character flashes  infrequently  and  
at  intervals  which  the  subject  does not know(25). 
The BCI then determines which character the user 
attended by tracking each row and column when 
flashed.  Studies  reveal  that  the  P300  speller  
can  be successfully used, with information transfer 

rates as high as 13.3  bpm  achieved  in  subjects  
with  amyotrophic lateral sclerosis and 11.3 bpm 
in healthy subjects(26). The EP based paradigms 
have shown great potentials. However, they have 
some fundamental imitations. As the BCI user has to 
receive some stimuli, they might be distracted from 
the tasks they  want  the  computer  to  perform  or  
the  message  to  be communicated.  

Historical Review of BCI
 The origin of brain–computer interfaces 
(BCIs) dated to the discovery of the electrical 
activity of the human brain and the development 
of electroencephalography (EEG). In 1924 Berger 
was the first to record human brain activity by means 
of EEG. In addition, Berger identified oscillatory 
activity in the brain by analyzing EEG traces. One 
wave he identified was alpha wave (8–13 Hz), also 
known as Berger’s wave.

 Berger’s first recording device was 
immature. He inserted silver wires under the scalps 
of his patients. These were later replaced by silver 
foils attached to the patients’ head by rubber 
bandages. Berger associated the fluctuations in 
EEG wave with brain diseases. EEGs permitted 
completely new possibilities for the research 
of human brain activities. Various studies on 
the operant conditioning  have shown the first time 
that monkeys could learn to control the deflection 
of a BF meter arm with neural activity (27).  During 
the 1970, similar studies have demonstrated that 
monkeys could quickly learn to voluntarily control 
the firing rates of individual and multiple neurons in 
the primary motor cortex if they were rewarded for 
generating appropriate patterns of neural activity 
(28).

 Studies on developing algorithms to 
reconstruct movements from motor cor tex 
neurons have been started during early 1970s. 
In the 1980s, a research team at Johns Hopkins 
University proposed a mathematical relationship, as 
a cosine function, between the electrical responses 
of single motor cortex neurons in rhesus macaque 
monkeys and the direction in which they moved their 
arms. In addition, this team found that dispersed 
groups of neurons, in different areas of the monkey’s 
brains, collectively controlled motor commands, but 
was able to record the firings of neurons in only one 
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area at a time, because of the technical limitations 
imposed by his equipment (29).

 The mid-1990s has witnessed a dramatic 
development in BCI technologies (30). Kennedy et 
al built the first intra-cortical brain–computer BCI 
by implanting neurotrophic-cone electrodes into 
monkeys (31).

 Yang et al decoded neuronal firings to 
reproduce images seen by cats (32). They used an 
array of electrodes embedded in the thalamus of 
sharp-eyed cats (32). The thalamus main function 
is relaying and integrating all of the brain’s sensory 
input.

 After conducting initial studies in rats 
during the 1990s, Nicolelis et al developed BCIs 
that decoded brain activity in owl monkeys and used 
the devices to reproduce monkey movements in 
robotic arms. Monkeys have advanced reaching and 
grasping abilities and good hand manipulation skills, 
making them ideal test subjects for such work.

 This research team designed a BCI that 
reproduced owl monkey movements while the 
monkey operated a joystick or reached for food 
(33). The BCI operated in real time and could also 
control a separate robot remotely over Internet 
protocol. However, the monkeys could not see the 
arm moving and did not receive any feedback which 
is called open-loop BCI.

 The studies on developing BCI systems 
have focused on different research avenues. 
Predicting kinematic and kinetic parameters of limb 
movements and predicting EMG or electrical activity 
of the primate muscles are the main fields.  In line 
with these studies, Nicolelis et al demonstrated 
that the activity of large neural ensembles can 
predict arm position (34). lebedev et al argued 
that brain networks reorganize to create a new 
representation of the robotic appendage in addition 
to the representation of the animal’s own limbs 
[14]. 

 The use of BMIs has also led to a deeper 
understanding of neural networks and the central 
nervous system. Studies have shown that despite 
the belief indicating the highest efficacy of neurons 

under a group working, single neurons can be 
conditioned through BMIs to fire at a pattern that 
allows primates to control motor outputs. In addition, 
applications of BMIs has led to development of the 
single neuron insufficiency principle which states 
that even with a well tuned firing rate single neurons 
can only carry a narrow amount of information and 
therefore the highest level of accuracy is achieved 
by recording firings of the collective ensemble. Other 
principles discovered with the use of BMIs include 
the neuronal multitasking principle, the neuronal 
mass principle, the neural degeneracy principle, 
and the plasticity principle (34-36).

Technical Principles of BCI
 Since the first introduction of EEG in 
1929, the idea of using EEG for communication 
and control where it allows the brain to act on the 
environment without the normal intermediaries 
of peripheral nerves and muscles. In the 1970’s, 
several scientists developed simple communication 
systems that were driven by electrical activity 
recorded from the head. Early in that decade, 
the Advanced Research Projects Agency (ARPA) 
became interested in technologies that provided a 
more immersed and intimate interaction between 
humans and computers and included so-called 
“bionic” applications. A program proposed by 
lawrence focused initially on autoregulation and 
cognitive BF. It sought to develop BF techniques 
aiming to improvement of human performance, 
especially persons with high mental loads including 
the performance of military personnel engaged in 
tasks that had high mental loads. The research 
produced some valuable insights on BF, but 
made minimal progress toward its stated goals. 
A new direction, under the more general label of 
“biocybernetics,” was then defined and became the 
main source of support for bionics research in the 
ensuing years. One of the main applications of the 
biocybernetics program is using biological signals in 
the control of vehicles, weaponry, or other systems. 
The biological signals are analyzed and processed 
real-time and then are used as a control command 
for operating remote devices. The most successful 
project in this area was the system proposed by 
Vidal et al (37). Using computer-generated visual 
stimulation and sophisticated signal processing, 
visual evoked potentials (VEPs) could provide a 
communication channel through which a human 



428 YADOllAHPOUR & BAGDElI, Orient. J. Comp. Sci. & Technol.,  Vol. 7(3), 425-442 (2014)

could control the movement of a cursor through 
a two-dimensional maze (38). The studies on the 
VEPs as output command for communication have 
demonstrated that the control systems working with 
EEG signals are different from the control systems 
use electromyography (EMG) activity from scalp or 
facial muscles.

 Because scalp-recorded EMG activities 
are typically much more prominent than EEG activity 
at the same locations, EMG-based communication 
can impose significant noises where can wrongly 
be interpreted as EEG-based communication. 
To the extent that EMG-based communication is 
mistaken for EEG-based communication, it can 
hamper the latter’s development. Detailed spectral 
and topographical analyses are necessary to 
distinguish the EMG- from EEG-based signals. In 
this regard, several studies have been performed to 
reveal fundamental distinction between EEG-based 
communication that depends on muscle control 
(e.g., VEPs that depend on where the eyes are 
directed), and EEG-based control independent of 
muscle control.

 These distinctions have resulted in new 
definition of BCI as “a communication system that is 
independent of the brain’s normal output pathways 
of peripheral nerves and muscles.” This definition 
reflects the principal reason for recent interest 
in BCI development—the possibilities it offers 
for providing new augmentative communication 
technology for paralyzed patients or patients with 
severe movement deficits. 

 Several dif ferent BCIs have been 
developed that do not depend on nerves and 
muscles (39)–(40). These systems use either EEG 
activity recorded from the scalp or the activity of 
individual cortical neurons recorded from implanted 
electrodes. While these are exciting developments, 
with considerable theoretical significance and 
practical promise, they are relatively low band-width 
devices, offering maximum information transfer 
rates of 5–25 bits/min. Furthermore, improvement is 
likely to be gradual, and to require continued careful 
and laborious investigation. BCI development 
requires recognition that a “wire-tapping” analogy 
probably does not apply—that the goal is not 
simply to listen in on brain activity , through EEG, 

intra-cortical recording, or some other method) and 
thereby determine a person’s intentions. 

 It is well established that a BCI as a new 
output channel for the brain can engage the brain’s 
adaptive capacities that adjust output to optimize 
performance. Therefore, BCI operation depends 
on the interaction of two adaptive controllers, the 
user’s brain, which produces the activity measured 
by the BCI system, translates that activity into 
specific commands. Successful BCI operation 
should consist of proper muscle control as well as 
proper control of EEG or single-unit activities. like 
any communication and control system, a BCI has 
an input, an output, and a translation algorithm that 
converts the input into the output. BCI input consists 
of a particular feature(s) of brain activity and the 
methodology used to measure that feature(s). BCIs 
may use frequency-domain features such as EEG 
or rhythms occurring in specific areas of cortex 
(41)–(25) (25)–(42), or time-domain features such 
as slow cortical potentials, P300 potentials, or the 
action potentials of single cortical neurons (26, 43, 
44). The methodology includes the scalp electrode 
type and locations, the referencing method, the 
spatial and temporal filters, and other signal 
processing methods used to detect and measure the 
features. Nevertheless, the distinction is important 
because attention to features as reflections of 
nervous system anatomy and physiology, rather 
than as merely products of particular analysis 
methods, helps improvements in BCI technology, 
and also encourages continued attention to the 
problem of artifacts such as EMG activity which 
can affect autoregressive parameters.

 Each BCI uses a particular algorithm 
to translate its input, target EEG features, into 
output control signals. This algorithm might include 
linear or nonlinear equations, a neural network, or 
other methods, and might incorporate continual 
adaptation of important parameters to key aspects 
of the input provided by the user(45). BCI outputs 
can be cursor movement, letter or icon selection, 
or another form of device control, and provides the 
feedback that the user and the BCI can use to adapt 
to optimize communication. 

 In addition to input, translation algorithm, 
and output, there are several main characteristics 
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for each BCI has other distinctive characteristics 
influencing its performance. The main characteristics 
are On/Off mechanism, response time, speed 
and accuracy and its integration into information 
transfer rate, type and extent of required user 
training, appropriate user population, appropriate 
applications, and constraints imposed on concurrent 
conventional sensory input and motor output. 

 Comparisons of the BCI performance are 
often difficult because of significant differences in 
their inputs, translation algorithms, outputs, and 
other characteristics. Although different systems 
are required for different applications, developing 
a standard performance measure as a general 
purpose benchmark for following BCI development 
is necessary. A standard measure of communication 
systems is bit rate, the amount of information 
communicated per unit time. Bit rate depends on 
both speed and accuracy (46, 47).For example, the 
information transfer rate of a BCI that can select 
between two possible choices with 90% accuracy 
is twice that of a BCI that can select between them 
with 80% accuracy, and equal to that of a BCI that 
can select between four possible choices with 65% 
accuracy. The enormous importance of accuracy, 
illustrated by the doubling in information transfer 
rate with improvement from 80% to 90% accuracy 
in a two-choice system, has not usually received 
appropriate recognition in BCI-related publications. 
While the effectiveness of each BCI system will 
depend in considerable part on the application to 
which it is applied, bit rate furnishes an objective 
measure for comparing different systems and for 
measuring improvements within systems.

Neurophysiological Signals in BCI
 Various signals have been used as 
measures in BCI systems. Interfaces based on 
brain signals require on-line detection of mental 
states from spontaneous activity: different cortical 
areas are activated while thinking different things 
such as a mathematical computation, an imagined 
arm movement, a music composition, etc. The 
information of these “mental states” can be recorded 
with different methods. Neuropsychological signals 
can be generated by one or more of the following 
three approached: implanted methods, evoked 
potentials, known as event related potentials (ERP), 
and operant conditioning. Both EP and operant 

conditioning methods are normally externally-
based BCIs as the electrodes are located on the 
scalp. Table 1 describes the different signals used 
in BCIs. However, some of the described signals 
fit into multiple categories. As an example, single 
neural recordings may use operant conditioning to 
train neurons for control or may accept the natural 
occurring signals for control(8, 42, 48-51). 

 Implanted methods use signals from 
single or small groups of neurons to control a BCI. 
In most cases, the most suitable option for placing 
the electrodes is the motor cortex region, because 
of its direct relevance to motor tasks, its relative 
accessibility compared to motor areas deeper in 
the brain, and the relative ease of recording from 
its large pyramidal cells. These methods can result 
in relatively high signal-to-noise ratio, however 
they are invasive. They require no remaining 
motor control and may provide either discrete or 
continuous control. While most systems are still in 
the experimental stage, Kennedy’s group has forged 
ahead to provide control for locked-in patient JR (31, 
52, 53). Kennedy’s approach involves encouraging 
the growth of neural tissue into the hollow tip of 
a two-wire electrode known as a neurotrophic 
electrode. The tip contains growth factors that spur 
brain tissue to grow through it. Through an amplifier 
and antennas positioned between the skull and 
the scalp, the neural signals are transmitted to a 
computer, which in turn uses the signals to drive a 
mouse cursor. This technique has provided stable 
long term recording and patient JR has learned to 
produce synthetic speech with the BCI over a period 
of more than 426 days. The efficacy of this technique 
on multiple individuals is not clear, but it has EPs are 
brain potentials that are evoked by the occurrence 
of a sensory stimulus. They are usually obtained by 
averaging a number of brief EEG segments time-
registered to a stimulus in a simple task. In a BCI, 
EPs may provide control when the BCI application 
produces the appropriate stimuli. This paradigm 
has the benefit of requiring little to no training to us 
e the BCI at the cost of having to make users wait 
for the relevant stimulus presentation. EPs offer 
discrete control for almost all users, as EPs are 
an inherent response. Exogenous components, or 
those components influenced primarily by physical 
stimulus properties, generally take place within the 
first 200 milliseconds after stimulus onset. These 
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components include a Negative waveform around 
100 ms (N1) and a positive waveform around 200 
ms after stimulus onset (P2). VEPs fall into this 
category. Sutter uses short visual stimuli in order to 
determine what command an individual is looking 
at and therefore wants to pick He also shows that 
implanting electrodes improves performance of 
an externally-based BCI. In a different approach, 
McMillan and colleagues have trained volunteers 
to control the amplitude of their steady-state VEPs 
to florescent tubes flashing at 13.25 Hz(54-56). 
Using VEPs has the benefit of a quicker response 
than longer latency components. The VEP requires 
subject to have good visual control in order to look 
at the appropriate stimulus and allows for discrete 
control. As the VEP is an exogenous component, it 
should be relatively stable over time. Endogenous 

components, or those components influenced 
by cognitive factors, take place following the 
exogenous components. Different research teams 
independently discovered a wave peaking at 
around 300 ms after task-relevant stimuli (57, 58). 
This component is known as the P3 (Fig 2). While 
the P3 is evoked by many types of paradigms, the 
most common factors influencing it are stimulus 
frequency (less frequent stimuli produce a larger 
response) and task relevance. The P3 is fairly 
stable in locked-in patients, re-appearing even after 
severe brain stem injuries. Farwell and Donchin first 
showed that this signal may be successfully used in 
a BCI (59). Using a broad cognitive signal like the P3 
has the benefit of enabling control through a variety 
of modalities, as the P3 enables discrete control in 
response to both auditory and visual stimuli. P3 is 

Table. 1: Common physiological signals used in BCIs

Mu and Alpha Wave  Mu wave; 8-12 Hz spontaneous EEG wave; associated with 
(Operant Conditioning) motor activities; maximally recorded over sensorimotor cortex. 
 Alpha wave: 8-12 Hz, but is recorded over occipital cortex. 
 The amplitudes of mu and Alpha waves can be altered 
 through BF training.  
Event-Related Synchronization / Movement-related increases and decreases in specific frequency  
Desynchronization (ERS/ERD)   bands maximally located over brain’s motor cortex. Person is 
(Operant Conditioning) trained through BF to alter the amplitude of signals in the 
 appropriate frequency bands. These signals exist even when the 
 person imagines moving as the movement-related signals 
 are preparatory rather than actual.  
Steady-State Visual Evoked  A response to a visual stimulus modulated at a specific frequency. 
Potential (SSVER) The SSVER is characterized by an increase in EEG activity at the 
 stimulus frequency. The visual stimulus is generated using white 
 fluorescent tubes modulated  at around 13.25 Hz or by another 
 kind of strobe light. A system is constructed by conditioning 
 individuals to modulate the amplitude of their response or by 
Individual Neuron  Person receives implanted electrodes that may obtain responses 
Recordings from local neurons or even encourage neural tissue to grow into
  the implant. Operant conditioning or the natural response of a 
 cell or cells is used to achieve control.
Slow Cortical Potential  large negative or positive shifts in the EEG signal lasting 
Operant Conditioning 300ms to several minutes. Person can be trained through BF 
 to produce these shifts.
P3 Component of the  A positive shift in the EEG signal approximately 300-400ms 
Evoked Potential after a task related stimulus. Maximally located over the central 
 parietal region; an inherent response and no training is necessary.
Short-latency Visual  To produce the component, a response to a short visual 
Evoked Potentials stimulus is necessary. Maximally located over the occipital region; 
 It is an inherent response and no training is necessary.
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a cognitive component and reportedly changed in 
response to subject’s fatigue. 

 Operant conditioning is a method for 
modifying the behavior (an operant), which utilizes 
contingencies between a discriminative stimulus, an 
operant response, and a reinforcer to change the 
probability of a response occurring again in a given 
situation. In the BCI framework, it is used to train the 
patients to control their EEG. As it is presented in 
Table 3.1, several methods use operant conditioning 
on spontaneous EEG signals for BCI control. The 
main feature of this kind of signals is that it enables 
continuous rather than discrete control. This feature 

may also serve as a drawback: continuous control 
is fatiguing for subjects and fatigue may cause 
changes in performance since control is learned.  

 Wolpaw et al train individuals to control 
their Mu wave amplitude for cursor control (60).  
Mu wave control does not require subjects to have 
any remaining motor control. For the cursor control 
task, normal subjects are trained on the order of 
10-15 sessions to learn to move the cursor up/
down. In the several papers examined, it appears 
that not all subjects obtain control, although most 
seem to during this time frame. In related work, 
the Graz brain-computer interface trains people to 

Fig. 1: Schematic diagram of a brain computer interface

Fig. 2: P3 evoked potential
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control the amplitude of their ERS/ERD patterns. 
Subjects are trained over a few sessions in order 
to learn a cursor control task. As in the Mu wave 
control, not all subjects learn to control the cursor 
accurately.  One of the interesting aspects of this 
system is that it gives BF to the user in the form 
of a moving cursor after training.  Several studies 
have shown that EEG signal shows different 
characteristics during different mental calculations. 
These results indicate that different regions of the 
brain are active during different types of mental 
calculation, and if these different tasks may be 
accurately recognized, they could be used in a BCI. 
lin et al. (61) describe a study where five tasks were 
compared: multiplication problem solving, geometric 
figure rotation, mental letter composing, visual 
counting, and a baseline task where the subject was 
instructed to think about nothing in particular. The 
results of this experiment suggest that the easiest 
tasks to identify are multiplication problem solving 
and geometric figure rotation, but even these 
tasks are not easily identified. Other papers have 
concentrated on mental tasks, but none have found 
easily recognizable differences between different 
tasks(62). BCI uses different strategies to control 
the output the main of them are motor imagery, BF 
or NF and visual evoked potential.

Neurogaming 
 Neurogaming is a new field of gaming 
that uses non-invasive BCI to improve game-play 
so that users can interact with a console without 
the use of a traditional controller (63). Some 
neurogaming software use a player’s brain waves, 
heart rate, expressions, pupil dilation, and even 
emotions to complete tasks or affect the mood of 
the game[Schwarz, 2014 #375]. For example, game 
developers at Emotiv have created non-invasive 
BCI that will determine the mood of a player and 
adjust music or scenery accordingly. This new form 
of interaction between player and software will 
enable a player to have a more realistic gaming 
experience. Because there will be less disconnect 
between a player and console, Neurogaming will 
allow individuals to utilize their “psychological 
state and have their reactions transfer to games in 
real-time (64). However, neurogaming is a relatively 
new technology which need more detailed and 
controlled studies to develop reliable technique.  

Motor Imagery 
 Motor imagery involves the imagination 
of the movement of various body parts resulting in 
sensorimotor cortex activation, which modulates 
sensorimotor oscillations in the EEG. This can be 
detected by the BCI to infer a user’s intent. Motor 
imagery requires a number of sessions of training 
before acceptable control of the BCI is acquired. 
These training sessions may take a number of hours 
over several days before users can consistently 
employ the technique with acceptable levels of 
precision. Regardless of the duration of the training 
session, users are unable to master the control 
scheme. This results in very slow pace of the game-
play. 

Biofeedback/Neurofeedback 
 BF is used to monitor a subject’s mental 
relaxation. In some cases, BF does not monitor 
EEG, but instead bodily parameters such as (EMG), 
galvanic skin resistance (GSR), and heart rate 
variability (HRV). Many BF systems are used to 
treat certain disorders such as attention deficit 
hyperactivity disorder (ADHD), sleep problems in 
children, teeth grinding, and chronic pain. EEG BF, 
also known as neurofeedback (NF) systems typically 
monitor four different bands (theta: 4–7 Hz, alpha:8–
12 Hz, SMR: 12–15 Hz, beta: 15–18 Hz) and direct 
the subject to control these waves towards desirable 
states. Passive BCI involves using BCI to enrich 
human–machine interaction with implicit information 
on the actual user’s state. Using simulations to 
detect when users intend to push brakes during an 
emergency car stopping procedure is an example 
of passive BCI. Game developers using passive 
BCIs need to acknowledge that through repetition 
of game levels the user’s cognitive state will change 
or adapt. Within the first play of a level, the user will 
react to things differently during the second play: 
for example, the user will be less surprised at an 
event in the game if he/she is expecting it (65). 

Visual Evoked Potential 
 A VEP is an electrical potential recorded 
after a subject is exposed by a visual stimulus. There 
are several types of VEPs.

 Steady-state visually evoked potentials 
(SSVEPs) use potentials generated by exciting 
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the retina, using visual stimuli modulated at certain 
frequencies. SSVEPs stimuli are often formed 
from alternating checkerboard patterns or flashing 
images. The frequency of the phase reversal of 
the stimulus is clearly distinguished in the EEG 
spectrum which in turn the SSVEP stimuli is easily 
detected. Several studies have shown the efficacy 
of SSVEP in several BCI systems. Elicited SSVEP 
has high amplitude so that the transient VEP and 
blink movement and ECG artifacts do not affect 
the frequencies monitored. In addition, the SSVEP 
signal is highly robust where the topographic 
organization of the primary visual cortex is such that 
a broader area obtains afferents from the central 
region of the visual field.  However, SSVEP has 
several problems. As SSVEPs use flashing stimuli 
to infer a user’s intent, the user must gaze at one of 
the flashing or iterating symbols to interact with the 
system. It is, therefore, likely that the symbols could 
become irritating and uncomfortable to use during 
longer play sessions, which can often last more than 
an hour which may not be an ideal gameplay.

 Another type of VEP used in BCIs the 
P300 potential. The P300 event-related potential is 
a positive peak in the EEG that occurs at roughly 
300 ms after the appearance of a target or oddball 
stimulus. The P300 is reportedly related to a higher 
level attention process or an orienting response. 
Using P300 as a control scheme in BCIs has the 
advantage of needing short training sessions. The 
first application of P300 measure as control in 
BCI is the P300 matrix. In this system, a subject 
chooses a letter from a grid of 6 by 6 letters and 
numbers. The rows and columns of the grid flashed 
sequentially and every time the selected “choice 
letter” illuminates the user’s P300 is potentially 
elicited. However, the communication process, 
at approximately 17 characters per minute is 
quite slow. The P300 is a discrete rather than a 
continuous control mechanism. The advantage of 
P300 in play gaming is that the player does not have 
to teach himself/herself how to use a completely 
new control system but  only has to undertake short 
training instances, to learn the gameplay mechanics 
and basic use of the BCI paradigm.

Invasive BCIs
 Two different research approaches have 
resulted in two different types of BCIs: invasive 

BCIs, characterized by implanted electrodes in 
brain tissue and noninvasive BCIs which work on 
electrophysiological recordings in humans such as 
EEG and magnetoencephalography (MEG) and 
metabolic changes such as functional magnetic 
resonance imaging (fMRI) and near infrared 
spectroscopy (NIRS). Both invasive and non-invasive 
BCIs have originated from animal experiments. 
Invasive BCIs consist of implanted multi-electrode 
arrays in the motor cortex of paralyzed patients, 
premotor cortex of monkeys, or parietal motor 
command areas (34, 66, 67). In invasive BCIs 
intended skilled movements are reconstructed 
from neuronal firing patterns on-line. These 
reconstructions use different approaches Different 
On the basis of “sparse coding” approaches to motor 
learning (Riehle and Vaaida, 2005) and directional 
coding vectors of motor neurons (Georgopulos et 
al., 1986), automatized complex movements can 
be reconstructed on-line from relatively few motor 
neurons using simple algorithms: Nicolelis’ group 
(Carmena et al., 2003) demonstrated in monkeys 
after extensive training of a reaching and grasping 
movement that firing patterns of 32 neurons are 
sufficient to execute that movement directly with 
an artificial limb. Chapin et al. (1999) trained rats to 
move a lever with an artificial arm in a Skinner box 
for reward with extracellular firing of cortical cells 
without any actual movement.

 The second category of BCI research is 
originated in the concepts of BF and instrumental-
operant learning of autonomic functions. During the 
late 1960s and early 1970s Miller et al opposed 
the traditional wisdom of the autonomous nervous 
system (ANS) as autonomous, independent of 
voluntary control of the somatic central nervous 
system (CNS). Voluntary control is acquired through 
operant (instrumental) conditioning, whereas 
modification of involuntary ANS functions is 
learned through classical (Pavlovian) conditioning, 
a distinction first emphasized by Skinner, 
1953; Holland & Skinner, 1961.

 Miller (1969) challenged that view and 
presented experimental evidence in curarized 
and artificially ventilated rats: even after long-term 
curarization of several weeks the animals learned 
to increase and decrease heart rate, renal blood 
flow, dilation and constriction of peripheral arteries 
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in an operant conditioning paradigm rewarding the 
animals for increases and decreases of the particular 
physiological function. These studies stirred an 
enormous interest in the scientific and clinical 
community, particularly in psychosomatic medicine 
and behavior modification. The results suggested 
that instrumental (“voluntary”) control of autonomic 
functions is possible without any mediation 
of the somatic-muscular system paralyzed by 
curarization: heart rate increase is usually learned 
and controlled by an increase in muscle tension; 
curarization prevents this mediation of the motor 
system. Various studies have shown that operant 
training of any internal body function is possible. 
As a result, various research interests have been 
stimulated to seek treat different diseases such as 
high blood pressure, cardiac arrhythmias, vascular 
pathologies, renal failure, gastrointestinal disorders, 
and many others.

Vision
 Invasive BCI techniques aim at repairing 
damaged sight and providing new functionality for 
people with paralysis. Invasive BCIs are implanted 
directly into the grey matter of the brain during 
neurosurgery. The invasive devices produce the 
highest quality signals among BCI devices since 
they are implanted into the grey matter. However, 
they are associated with the risk of scar-tissue build-
up, weakening or even eliminating the signal as the 
body reacts to a foreign object in the brain (37).

 In vision science, direct brain implants have 
been used to treat non-congenital blindness (68). 
Dobelle et al proposed the first working brain 
interface to restore sight.  Dobelle’s first prototype 
was implanted into “Jerry”, a man blinded in 
adulthood, in 1978. A single-array BCI containing 
68 electrodes was implanted onto Jerry’s visual 
cortex and succeeded in producing the sensation 
of seeing light, phosphenes . The system included 
cameras mounted on glasses to send signals to the 
implant. Initially, the implant allowed Jerry to see 
shades of grey in a limited field of vision at a low 
frame-rate. This also required him to be hooked up 
to a mainframe computer, but shrinking electronics 
and faster computers made his artificial eye more 
portable and now enable him to perform simple 
tasks unassisted (69). 

Movement
 BCIs focusing on motor neuroprosthetics 
aim to either restore movement in individuals with 
paralysis or provide devices to assist them, such 
as interfaces with computers or robot arms.

 Researchers at Emory University in Atlanta, 
were first to install a brain implant in a human that 
produced signals of high enough quality to simulate 
movement. Their patient, Johnny Ray (1944–2002), 
suffered from ‘locked-in syndrome’ after suffering 
a brain-stem stroke in 1997. Ray’s implant was 
installed in 1998 and he lived long enough to start 
working with the implant, eventually learning to 
control a computer cursor; he died in 2002 of a brain 
aneurysm (70).

 Matt Nagle who was paralyzed from the 
neck down, became the first person to control an 
artificial hand using a BCI in 2005.  A 96-electrode 
chip was implanted in his right precentral gyrus, 
the area of the motor cortex for arm movement. 
The implant allowed Nagle to control a robotic arm 
by thinking about moving his hand as well as a 
computer cursor, lights and TV(71). This was the 
first BCI with electrodes located on the surface of 
the skull, instead of directly in the brain.

 More recently, several studies have 
demonstrated further success in direct control of 
robotic prosthetic limbs with high degree of freedom 
using direct connections to arrays of neurons in the 
motor cortex of patients with tetraplegia (72, 73).

Partially Invasive BCIs
 Partially invasive BCI devices are implanted 
inside the skull but rest outside the brain rather 
than within the grey matter. They produce better 
resolution signals than non-invasive BCIs where 
the bone tissue of the cranium deflects and deforms 
signals with lower risk of scar-tissue forming in the 
brain than fully invasive BCIs.

 Electrocorticography (ECoG) measures 
the electrical activity of the brain from beneath 
the skull so that the electrodes are placed above 
the cortex, beneath the durra mater (74). ECoG 
technologies were first trialled in humans in 2004. 
In a later trial, the researchers enabled a teenage 
boy to play Space Invaders using his ECoG implant 
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(75). This research indicates that control is rapid, 
requires minimal training, and may be an ideal 
tradeoff with regards to signal fidelity and level of 
invasiveness.

 ECoG is a very promising intermediate BCI 
modality because it has higher spatial resolution, 
better signal-to-noise ratio, wider frequency range, 
and less training requirements than scalp-recorded 
EEG, while lower technical difficulty, lower clinical 
risk, and superior long-term stability than intra-
cortical single-neuron recording (74). The control 
outputs extracted from ECOG signal enjoy high 
level of control with minimal training requirements.  
Recent studies have shown great potentials 
of ECOG measures as control signal for BCIs 
especially for patients with severe motor disabilities 
shows potential for real world application for people 
with motor(76, 77).

Non-invasive BCIs
 In non-invasive BCIs non-invasive neuro-
imaging technologies are used as interfaces. Signals 
recorded in these techniques are used to power 
muscle implants and restore partial movement in 
an experimental volunteer. Although they are easy 
to wear, non-invasive implants produce poor signal 
resolution because the skull dampens signals, 
dispersing and blurring the electromagnetic waves 
created by the neurons. Although the waves can 
still be detected, determining the brain’s region 
produces the waves is highly difficult (78-82).

EEG Based Classification in BCI
 It is well known that the variation of the 
surface potential distribution on the scalp reflects 
functional activities emerging from the underlying 
brain (83). This surface potential variation can be 
recorded by affixing an array of electrodes to the 
scalp, and measuring the voltage between pairs of 
these electrodes, which are then filtered, amplified, 
and recorded. The resulting data is called the 
EEG.

 EEG is the most studied potential 
non-invasive interface, mainly because of its 
fine temporal resolution, ease of use, portability and 
low set-up cost. However, An EEG recording system 
is highly susceptible to noise. Another substantial 
barrier to using EEG as a BCI is the extensive 

training a user is required to work with the system. 
For example, in experiments which were aimed 
to train severely paralyzed people to self-regulate 
the slow cortical potentials in their EEG to such an 
extent that these signals could be used as a binary 
(84).  The experiment showed ten patients trained 
to move a computer cursor by controlling their 
brainwaves. The process was slow, requiring more 
than an hour for patients to write 100 characters with 
the cursor, while training often took many months.

 Oscillatory activity is another parameter 
with high control value in a BCI system.  Users can 
choose the brain signals to operate a BCI, including 
mu and Beta wave is one of these brain waves.

 Patterns of P300 waves are generated 
involuntarily (stimulus-feedback) when people see 
something they recognize and may allow BCIs to 
decode categories of thoughts without training 
patients first. By contrast, the BF methods described 
above require learning to control brainwaves so the 
resulting brain activity can be detected.

 lawrence Farwell and Emanuel Donchin 
developed an EEG-based BCI in the 1980s 
(59). Their “mental prosthesis” used the P300 
brainwave response to allow subjects, including 
one paralyzed locked-In syndrome patient, to 
communicate words, letters and simple commands 
to a computer and thereby to speak through 
a speech synthesizer driven by the computer. 

 Recent advances in EEG signal processing, 
new insights into association between EEG-based 
measures and mental states and advances in high 
resolution EEG measurements have suggested the 
efficacy of EEG-based BCI comparable with invasive 
BCI. Using advanced functional neuro-imaging 
such as BOlD functional MRI and EEG source 
imaging, co-variation and co-localization of 
electrophysiological and hemodynamic signals 
induced by motor imagination are possible (85).  

 In addition to a brain-computer interface 
based on brain waves, as recorded from scalp 
EEG electrodes, virtual EEG signal-based BCI 
using the EEG inverse problem solution has been 
investigated in different studies(86).
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Neurogaming
 Neurogaming is a new field of gaming 
that uses non-invasive BCI to improve game-play 
so that users can interact with a console without 
the use of a traditional controller(63). Some 
neurogaming software use a player’s brain waves, 
heart rate, expressions, pupil dilation, and even 
emotions to complete tasks or affect the mood 
of the game(87). For example, game developers 
at Emotiv have created non-invasive BCI that will 
determine the mood of a player and adjust music 
or scenery accordingly. This new form of interaction 
between player and software will enable a player to 
have a more realistic gaming experience. Because 
there will be less disconnect between a player and 
console, Neurogaming will allow individuals to utilize 
their “psychological state and have their reactions 
transfer to games in real-time (64). However, 
neurogaming is a relatively new technology which 
need more detailed and controlled studies to 
develop reliable technique. 

Future directions
 One of the main issues in BCI is the 
dependence of its operation on the user behaviors 
in encoding his/her desires in the EEG features 
that the system measures and translates into 
output control signals. Therefore, the progress 
depends on development of improved training 
methods. Future studies should evaluate the 
effects of the instructions given to users, and 
analyze the relationships between user reports of 
strategies employed and actual BCI performance. 
For example, some BCI protocols ask the user to 
employ very specific motor imagery such as imagery 
of right or left hand movement or other mental tasks 
to produce the EEG features the system uses as 
control signals (41, 88), (89). Others may leave the 
choice of imagery or even using any imagery up to 
the user (41), (90). Analysis of the similarities and 
differences between acquisition of BCI control and 
acquisition of conventional motor or non-motor skills 
is necessary to improving the training methods. In 
addition, the possible impacts of subject mental 
states including motivation, fatigue, frustration, and 
other aspects require exploration. Users’ reports 
might help in assessing these factors. However, 
the value of user’s reports is controversial. Users’ 
reports of their strategies may not accurately reflect 

the processes of achieving and maintaining EEG 
control (91). 

 light reactive imaging BCI technology is 
one of the most recent advances in BCI technology.  
This technique involves implanting a laser inside 
the skull. The laser is trained on a single neuron 
and the neuron’s reflectance is measured by a 
separate sensor. Upon the firing of the neuron, 
pattern and wavelengths of the reflected laser light 
slightly change. This would allow researchers to 
monitor single neurons but requires less contact 
with tissue and reduce the risk of scar-tissue 
build-up. The most important barrier in developing 
BCI technology is currently the lack of a sensor 
modality that provides safe, accurate and robust 
access to brain signals. However, developing such 
as sensor is achievable within the next twenty years. 
Application of such sensor can greatly expand 
the range of communication functions that can be 
provided using a BCI.

 The continuation and acceleration of BCI 
development and application does not depend 
solely on scientific and technical advances. It 
depends also on attention to important practical 
issues including the healthcare strategies and 
appropriate funding. Nowadays, the development of 
BCI technique is limited by limited funding and small 
number of people involved. On the other hand, naive 
and overly enthusiastic media attention is likely to be 
detrimental in the long run. Major funding increases, 
particularly for development of specific applications, 
depend on generating interest from industry and on 
securing approval for reimbursement from medical 
insurance companies. Industrial interest depends in 
large measure on the numbers of potential users. 
Expansion beyond the relatively small numbers of 
people, who are locked-in, to include individuals 
with high-level spinal cord injuries or severe cerebral 
palsy, could draw much greater commercial interest. 
Furthermore, widespread application of BCI-based 
communication systems depends on cost, ease of 
training and use, as well as on careful attention to 
user satisfaction.

CONCLUSION 

 The studies on BCIs have shown promising 
potentials. A BCI is a communication and control 
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channel without the brain’s normal output path-ways 
of peripheral nerves and muscles. Any BCI system 
has inputs, outputs, and translation algorithms 
converting the input to the output. BCI operation 
depends on the interaction of the user’s brain and 
the system itself. A successful development of BCI 

system needs close interdisciplinary cooperation 
between neuroscientists, engineers, psychologists, 
computer scientists, and rehabilitation specialists. 
Further development in designing precise sensors 
capable of recording the brain’s signals in single 
unit level is crucial step in BCI development.  
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