
ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
December 2014,

Vol. 7, No. (3):
Pgs. 416-424

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

Enhance the Interaction Between Mobile Users
and Web Services using Cloud Computing

 Atul M. Gonsai1 and Rushi R. Raval2

1Department of Computer Science, Saurashtra University, Rajkot, Gujrat, India.
2 Department of M. Sc. (IT), GK & CK Bosamia College, Jetpur,

(Affiliated with Saurashtra University), India.

(Received: November 20, 2014; Accepted: December 16, 2014)

Abstract
	

	 Day-by-day smartphone network’s structures are improving in an efficient manner; they are
becoming ideal users to accessing the any web resources or a service, specifically, Services which
are access by Internet. Web services that are used to provide changed kind of services for an app
running on smart mobile users suitable and widespread used; still there are some limitations of
the current smart phone clients in common manner, like as low processing speed, limited storage
capacity, less band-width, latency, and in-adequate memory. This paper gears a platform free
architecture for connecting mobile users to the existing Internet based Services. In this architecture
includes a cross-platform design of smart mobile users based on client services and a middleware
for acquisitive the communication between mobile users and Internet based Web Services. We have
used the architecture for deployed services on cloud platforms, such as “Google App Engine” (GAE)
and “CloudSim” to enhance the consistency and scalability and reached up to the end-users.

Key words: Web-Services; Mobile Clients; JSON; GAE; CSV; PHP; REST.

Introduction
		
	 Mobile clients are likely to upsurge
progressively from current users. As cellular
network infrastructures incessantly improve, their
data broadcast develops gradually affordable and
available, and thus they are becoming prevalent
traditions to access the Internet Based Services,
mainly the Web Services that are also available
in the cloud computing. Today, mobile clients’ uses
devices like Android, iPhone, and Black-berry, have
encompassed applications that consume the web
services from popular websites, such as YouTube,

eBay and Msn. The share of android in smart phone
market is 46%, iPhone is 35% and blackberry is
10%1.

	 Though, there are difficulties in connecting
smart phones to present Internet based Services.
Initially, the Internet Based Services need to deliver
optimization for mobile clients. For e.g. the size of
the Web Services messages desires to be reduced
to fit the bandwidth of mobile clients. Moreover,
smart phones have to acclimate to different kinds
of Web Services, for e.g. SOAP and RESTful
Services. Figure1 shows a smart phone retrieving

417 Gonsai & Raval, Orient. J. Comp. Sci. & Technol., Vol. 7(3), 416-424 (2014)

Web Services. This paper considers how Cloud
Computing2 can help mobile clients connect to
existing Web Services.

Problem definition
	 Accessing Web Services from a smart
phone based mobile client is different compared to
the standard web services developments, because
of these aspects environment. A review done by Earl
et al3 estimated how well the current mobile clients
including Android, Symbian, iPhone, and Windows
Mobile, support the perception of cellular network
based research. According to the review, all of these
mobile platforms have certain limitations.

•	 The communication between user and
service is established through wireless
network.

•	 Mobile clients have limited resources like
Low processing power, small screen size
etc.

•	 Present Web Services in the Cloud doesn’t
support mobile clients.

	 There are several challenges in accessing
the Internet based Services from the existing
smartphone clients. The following two are the focus
of this paper.
	 Connection loss Problem: Meanwhile
the smart phone based devices are not stable
and due to the mobility of the smart phones and
the wire-less network setup, smart phones can be
momentarily removed from the previous connected
network and later may join available network.

	L atency/ Bandwidth Problem: Cellular
networks have a very limited bandwidth and are
often billed based on the amount of data transferred.
Though, even a simple SOAP message often
contains a large chunk of X M L data, which
consumes a lots of bandwidth and the broadcast

can cause major network dormancy. In addition,
the SOAP message contains mostly X M L tags that
are not all necessary for mobile clients.

	L imited resources problem: mobile clients
are normally “thin clients”4 with a less processing
power. They also have limited computational power
and screen size/resolution. These deficiencies are
only due to mobility5.

Architecture for mobile client devices
	 Middle ware Architecture6 is primarily
used in Distributed Computing system (DCS).
DCS7 “consist of multiple processors that don’t
share primary memory, however messages sending
over the network”; Mobile users are distributed
computers that connect to the middle-ware. In
Emmerich paper8, he stated four requirements
scenario for general middle ware.
	
	 Heterogenei ty : Components in a
distributed system can be implemented with
different languages and deployed on different-
different platforms. Therefore, the design needs to
study a heterogeneous location.

Table. 1: Http Methods and their Action

HTTP Methods	 CRUD Operation

GET	 Retrieve a Resource
POST	 Create a Resource
PUT	 Update a resource
DELETE	 Delete a Resource

Fig. 1: Mobile clients accessing the Internet
web services19

Fig. 2: Architecture for Mobile Clients Middle
Ware

418Gonsai & Raval, Orient. J. Comp. Sci. & Technol., Vol. 7(3), 416-424 (2014)

	 Network communication: Masses who
need to communicate with each-other involves
some transport layers (T C P and U D P) and
arranging, a method of transforming data structure
to transferable format.
	
Reliability: Requests maybe lost during the network
transmission. The middleware needs to deploy error
detection and correction mechanisms to enhance
reliability.

	 Scalability: Distributed systems deal
with client interactions and also interact between
distributed components. Changes in the allocation
of components could affect the system architecture,
which refers as transparency in the reference model
of open distributed processing

	 Co-ordination: Since distributed systems
have multiple points of control, different

components need to coordinate and collaborate
through synchronization.

	 Middleware Architecture is often used
to extend functions for thin clients, like mobile
devices. Uribarren et al9 proposed a middleware for
adaptation in mobile environments. The proposed
middle-ware hides the complexity of deploying
ubiquitous Apps. Applications are automatically
moved between different platforms.

	 When designing distributed systems,
scalability, should be the major concern issue. Rajive
et al10 did research on investigating scalable middle
ware to support mobile Internet applications.

	 The future middle ware solution for mobile
clients mostly focuses on application and content
adaptation. Heterogeneity, Network communication,
reliability, and co-ordination are four fundamental

Fig. 3(1): Layout on Android Mobile Clients

Fig. 3(2): Student admission procedure at college using Mobile App

419 Gonsai & Raval, Orient. J. Comp. Sci. & Technol., Vol. 7(3), 416-424 (2014)

requirements for general middleware as well as
middle ware for mobile device11. Scalability can be
achieved with distributed middle ware. Context can
help middleware to adapt to the heterogeneous
environment. However, the goal of the paper is to
use middleware to improve the interaction between
mobile clients and internet services as well as
use Cloud platforms to improve the scalability and
reliability of the middleware.

RESTful web service
	 RESTful12 is a software application
architecture modeled after the way data is
accessed, modified and represented on the web.
In the REST architecture, data and functionality are
considered as resources, and these resources are
retrieved with use of Uniform Resource Identifiers
(URIs), typically links on the web. The resources are
acted upon by using a set of modest, well defined
processes. The REST architecture is fundamentally
client-server based architecture, and is designed
to using as a state less communication protocol,
usually HTTP. In the R E S T architecture, users and
servers interchange representations of resources

with use of an identical protocol and interface. These
principles encourage REST applications to be
simple, lightweight, and have high performance.

	 RESTful web serv ices12 are web
applications built upon the REST architecture.
They expose resources (data and functionality)
through web URIs, and use the four main HTTP
methods to C.R.U.D. which are known as create,
retrieve, update, and delete resources. RESTful
WS typically map the four main HTTP methods to
the so called C.R.U.D. operations: create, retrieve,
update, and Del, below table shows a representing
of HTTP methods to these C.R.U.D. operation.

Proposed architecture for middle ware
	 The middle ware that is proposed will
act like as proxy that is hosted on the Cloud
platforms which provide mobile clients access to
Cloud services. The middle ware architecture will
improves interaction between mobile clients and
Cloud Services, for e.g., adaptation, optimization
and caching. The middle ware also provides
extended functions to mobile clients. In general,

Fig. 3(3): Admin can download in JSON and/or CSV format

Fig. 4: Native Smart phone implementation

the architecture enhances the dependability,
functionality, and compatibility of the interaction
between mobile clients and Cloud Web Services.
	
	 In order to overwhelm the difficulties stated
in the previous sections, the Cloud Computing
architecture provides the following features to
enhance the interaction between mobile clients and
Web Services.

420Gonsai & Raval, Orient. J. Comp. Sci. & Technol., Vol. 7(3), 416-424 (2014)

	 No Loss of connection: Client and
middleware caching -Copies of service results are
stored on both mobile clients and the middle ware.
While the mobile clients are not able to connect
to the middle ware, the client-side cache is used.
When the middleware to server connection is not
available, the middleware returns its cached data
to the mobile clients.
	
	 B a n d w i d t h / L a t e n c y : P r o t o c o l
transformation – Protocol transformation reduces
the latency as well as bandwidth of the client to
service interaction. The middle ware transforms
Simple Object Access Protocol (SOAP) to a much
light- weight format JSON through Restful Internet
Web Services. Transferring SOAP to light-weight
protocols, like Restful, reduces processing time as
well as the size of the messages13.

	 Optimization of Result: Result optimization
reduces the size of the service results, thus reduces
the bandwidth used to interact with internet based
services. The middle ware converts the format
of service results from X M L to JSON and
removes unnecessary data from the original
service result. Less data transmitting also reduces
network latency.

implementation of restful web service
	 The goal of the middleware cloud
architecture is to provide a proxy for mobile clients

connecting to Cloud services. Figure 2 shows
an overview of the middleware cloud and its key
features. The architecture consists of three parts,
the mobile-clients, the cloud services and the middle
ware. Since Cloud services are usually controlled
by service providers, the middle ware performs all
the necessary adaptation to the mobile clients.

Middle ware Architecture
	 The middle ware is responsible for
consuming the Cloud Services whether they are
SOAP or REST services like JSON and delivers the
service result to the mobile clients. On the smart
phone, mobile clients can define Web Services and
later execute the pre-defined Web Services. The
middle ware provide REST interface for the mobile
clients. Fig. 4 indicates how to consume/execute a
pre-defined Web Services. Note that the execution
starts with a HTTP GET request whose URL path
contains the resource identifier to the web. When
Web Services are executed through the middle
ware, the following steps are involved in the middle
ware.

•	 The mobile clients send a HTTP GET
request with an identifier of a Web Services
to the middle ware.

•	 The middle ware deals with interactions to
the Web Services (and generates SOAP
client if necessary).

•	 The middleware extracts (JSON or X M

Fig. 5(1): Performance testing for JSON, CSV
Loading Time and Scenario Completion Time

Comparison for 1 User16

Fig. 5(2): Performance testing for JSON, CSV
Loading Time and Scenario Completion Time

Comparison for 20 User16

421 Gonsai & Raval, Orient. J. Comp. Sci. & Technol., Vol. 7(3), 416-424 (2014)

L parsing) the required service results
from the original service result and form a
new service results in JSON format.

•	 The middleware stores a replica of result with
the service_ID in the database and returns
the enhanced result to the mobile client.

Mobile client implementation on middle ware
in mobile clients
	 In order to implemented the proposed
smartphone based architecture with client side
native libraries. Smartphones has an embedded
browser which includes JavaScript libraries that
implement several common functionalities of
the client side browser, for example, access a file
system and location service.

	 To verify the smart phone based client
design, we have develop the design with an idea
of generate a list of you tube channel as shown
in Figure 3.1. The application is getting response
with use of JSON parsing and a restful WS with
the mobile client design on smart phone. Using the
application, the mobile clients can access the Web
Services of the portal which is hosted on Google
cloud through the smart phones.

	 The mobile client application can be divided
into three layers; Controller, User interface (UI), and
Cache Manager. The UI layer has two enactments,
embedded browser UI and native UI. Figure show
how they look like on the device. Figure also shows
the architecture of both applications. The controller
is the key manager among the UI, middleware, and
cache manager. The controller creates the U I

and gets data from the RESTful client or cache-
manager. If that time network connections are not
accessible, the controller passes cached data to
the UI components.

	 Furthermore, we have developed one
more mobile/website app design with an idea of
admission procedure of college and day-to-day
generate a list of students with the full information
which was given by the students/parents, this
information was accessed by an admin, and admin
can also download that data in JSON format as well
as in CSV format from their mobile or computer
system as shown in Figure 3.2, 3.3. The application
is getting response with use of PHP, JSON parsing
with the mobile client design on smart phone. By
use of this app, the students/parents can access
the Web Services of the portal which is hosted
on Google cloud server through the use of smart
phones.

	 This mobile client app can be divided into
three layers; Google App Engine20, User interface
(UI), and Google Cloud Server. The UI layer has
embedded browser UI. Figure show how they look
like on the device. The GAE and GCS are the key
coordinators among the UI, middle-ware. The
GAE manage the user requests and gets data
from the mobile client and storage is on Google
Cloud Server (GCS). If network connections are
not obtainable, the control passes cached data to
the U.I. components.

	 Otherwise, it invokes the RESTful client
to get data from the middleware. The cache
manager then saves recent received data on a local
file system. With the native UI, the client interacts

Fig. 5 (3): Validate JSON data using
“JSONLint” Tool17

Fig. 5(4): JSON data parser testing valid data18

422Gonsai & Raval, Orient. J. Comp. Sci. & Technol., Vol. 7(3), 416-424 (2014)

with the middleware asynchronously. When the
native UI requires data, it passes a callback to the
controller and continues to receive UI events as
shown in Figure 4.

	 The controller starts a new thread to
interact with the middle ware. When the data arrives,
the U.I. gets updated through the notification. With
this model, the native UI can be updated as soon as
the data changes. The android app needs to wait for
the facts and figures to reach, because the native
library can’t receive a Java Script notification. The
android app also cannot be updated automatically
when the data changes.

	 The entire middle ware application is
hosted on a Google Application Engine GAE uses
the Services oriented architecture. The middle
ware architecture is implemented as an android
application. The application uses the RESTful
Internet Service interfaces to mobile clients,
since RESTful web services are more suitable
for mobile devices14, Because the middle ware uses
RESTful and JSON API of core Android libraries.

	 The middle ware also uses a popular
JSON client library which provides functions of
composing custom HTTP requests, sending and
receiving HTTP requests and responses. The
middle ware architecture expects the Web Services
to return JSON responses, so that results can be
extracted using the android build-in library. User
defined tasks, service actions, parameters and
results are Java objects which map to database
entities using the android API.

	 The middle ware still has a RESTful
interface to mobile clients, but the Google Application
Engine (GAE) platform itself is a Web application
server which can only handle server requests. The
middle ware constructs and sends HTTP requests
through the URL fetch service which implements
the android RESTful framework interface.

	 To enhance the communication between
mobile users and Web Services

•	 Evaluate the cross-platform capability of the
mobile clients design.

•	 Implement the mobile client in different

models.
•	 Consume RESTful WS through the

middleware.
•	 Transfers SOAP WS to RESTful Services to

be consumed by mobile clients.
•	 Reduce bandwidth consumption of mobile

clients.
•	 Push updates to mobile clients in real-time.
	 Using the Cloud platform as a way to improve

consistency and scalability of the middle
ware

•	 The middleware can be implemented on
“CloudSim” and Google Application Engine
“GAE”.

•	 Cloud platform improves the scalability and
consistency of the middleware.

Performance evaluation of web services
	 The middleware is implemented one as
a standard android application and other one as
a standard PHP with Python application. For first
application the middleware uses the Android 2.2
or above version, so it can be run on most of the
android devices.

	 And for another application PHP5.4.13
standard and Python 27, API version 1, so it can
be deployed in Google server containers. The
middleware also uses the file handling requests
to interact with the Google App Engine and also
with Google server. In the following experiments,
the middleware is deployed in two platforms,
Webserver with Apache Platform (Local), and
Google Application Engine (GAE), since Application
Engine uses Google’s internal structure, its h/w
specification is unidentified.
	
	 Because some experiments require
simulating a large number of mobile clients and
calculating the response times, a real mobile device
is not capable of doing such task. A performance
testing tool called “LoadUIWeb” [16] is used as a load
generator. The emulator for the cloud is CloudSim13.
LoadUIWeb is responsible for generating and
sending HTTP requests to the middleware in a
specified rate. LoadUIWeb calculates the mean of
response times every 5 seconds based on its log file
scenario. The load generator runs on the standard
server for the College Portal. The mobile client is
applied on Android. The Android device’s using

423Gonsai & Raval, Orient. J. Comp. Sci. & Technol., Vol. 7(3), 416-424 (2014)

Android Version 4.2. The build-in Apache HTTP
client is used to send HTTP request. Together are
connected to the Internet through wireless 802.11g
standard. The client uses the I/O libraries from PHP
and in build Browser Support.

Consuming College admission Web Services
through the Middleware
	 This experiment compares the overhead
associated with different WS interactions. College
Admission Portal provides RESTful WS interfaces
for their student admission service. Their RESTful
WS return result in either JSON or CSV format.
The tested WS is returned the result in following
manner.

	 In above scenario, we have set some
parameters like as User count: 1, Workstation:
Virtual, Browser: Google Chrome, Connection
speed: Maximum, Load: Steady Load, Max page
load time: 5 second.
	
	 For next scenario, we have set some
parameters like as User count: 20, Workstation:
Master, Browser: Google Chrome, Connection
speed: Maximum, Load: Steady Load, Continuous
Load: Enable and set to 10 seconds.

	 The middle ware is run on the standard
server. The “UID”, “Full Name”, and “E-mail”
segments of JSON and CSV result were taken for
the tests for the WS.

	 The size of the JSON result is about 129
KB and the size of the CSV result is about 190 KB.
The load generator sends HTTP request at the rate
of 1 request per 5 second so the middleware does
not overload.

Validate JSON and CSV Data
	 We have also tested generated data which
is in JSON and CSV format whether they generate
valid data or not, for that we are using online tool
“JSONLint” provided by arc90 Lab17.

Enhancing Interaction between the Client and
Middleware over Cloud

	 Consume “r-gkck-msc” RESTful Web
Services directly with JSON result and CSV

result.
	 Consume “r-gkck-msc” RESTful Web

Services through the middleware with
JSON result. The middleware forwards the
whole result. (No parsing involved in this
scenario)

	 Consume “r-gkck-msc” RESTful Web
Services through the middleware with CSV
result.

	 Consume “r-gkck-msc” RESTful Web
Services through the middleware with JSON
result. The middleware returns the optimized
result in JSON format.

	 Consume “r-gkck-msc” RESTful Web
Services through the middleware with
CSV result. The middleware returns the
optimized result in CSV format.

Conclusions
	
	 As service cl ients, smar t phones
basically have unique properties like they are
portable and small. They are personal devices
with numerous sensors. However, these smart-
phones have limitations, for e.g., minor bandwidth,
loss connectivity and less processing power. On
the other hand, the existing services are normally
designed for immobile clients. For e.g. SOAP is a
protocol which involves a lot of X M L parsing. To
overcome the limitations, this paper presents the
Middleware for the mobile based architecture for
connecting mobile device to the existing Cloud
Services.

	 The projected mobile-client design is
mobile platform independent. The mobile client
provides an interface for users to define services
and consume them through the middle ware. It
interrelates with the middle ware through RESTful
WS interface. The mobile client has been applied
as on Android platform. The smart phone based
design involves native as well as browser based
applications. For better compatibility aspects, the
interface can be applied on implanted browser with
use of HTML, CSS and JavaScript, while the actual
client component is implemented in platform reliant
on specific language, the server side scripts can run
on the application server.

424Gonsai & Raval, Orient. J. Comp. Sci. & Technol., Vol. 7(3), 416-424 (2014)

	 The middleware provides a medium for the
smart phones to access the Cloud Services. The

middleware also provides result optimizations which
extract the required data from the original service
results.

References

1.	 Charles Arthur “Nokia revenues slide 24%
but Lumia sales rise offers hope”. The
Guardian. (Retrieved 19 July 2013).

2.	 M.A. Vouk, “Cloud computing: - Issues,
research and implementations,” Information
Technology Interfaces, 2008. I T I 2008.
30th International-Conference on, 2008, pp.
31–40.

3.	 E. Oliver, “A survey of platforms for mobile-
networks research,” SIGMOBILE Mobile
Compute Comm. Revised, 12; 56–63
(2008)

4.	 M. Al-kistany, Sumi, “Adaptive wireless
thin client model for mobile -computing,”
Wireless Comm. Mobile-Computing., 9;
47–59 (2010).

5.	 M. Satyanarnynnan, “Mobile-computing,”
Computer, 26; 81-82 (1993).

6.	 D.E. Bakken and M. API, Middle ware,
2001.

7.	 H.E. Bal, J.G. Steiner, and A.S. Tanenbaum,
“Programming languages for distributed
computing systems (DCS),” A C M Compute
Surveys., 21; 261–322 (1989).

8.	 W. Emmerich, “Software engineering and
middle-ware: a roadmap,” ICSE ’00: Proc. of
the Conference on The Future of Software
Engineering, New York, NY, USA: A C M,
2000, pp. 117–129.

9.	 A. Uribarren, J. Parra, J.P. Uribe, M. Zamalloa,
and K. Makibar, “Middle ware for Distributed
Services and Mobile Applications,” Inter
Sense ’06: Proceedings of the 1st International
conference on Integrated internet ad-hoc
and sensor-networks, New York, NY, USA:
A C M, 2006.

10.	 T. Phan, R. Guy, and R. Bagrodia, “A
Scalable, Distributed Middleware Service
Architecture to Support Mobile Internet

Applications,” WMI ’01: Proceedings of the 1st
workshop on Wireless mobile internet, New
York, NY, USA: A C M, 2001, pp. 27–33.

11.	 P. Bellavista, A. Corradi, R. Montanari,
and C. Stefanelli, “A mobile computing
middle ware for location and context-aware
internet data services,” A C M Trans. Internet
Technology, 6; 356–380 (2006).

12.	 Fielding R., “Architectural Styles and
the Design of Network-based Software
Architectures,” Ph. D. Dissertation, University
of California, Irvine, California, USA, 2000.

13.	 Feda AlShahwan, Evaluation of Distributed
SOAP and RESTful Mobile Web-Services,
International Journal on Advances in
Networks and Services, 3 (3-4) (2010).

14.	 R. Deters, “SOA’s Last Mile-Connecting
Smartphones to the Service Cloud,” Cloud
Computing, IEEE International Conference
on, 80-87 (2011).

15.	 CloudSim: A Framework For Simulation
And Modeling Of Cloud Computing
Infrastructures And Services : http://www.
cloudbus.org/cloudsim/

16.	 Performance testing tool Web UI, JSON,
CSV data, LoadUIWeb Tool downloaded
from http://loaduiweb.org/

17.	 Valid JSON data using online tool access
from http://jsonlint.com/

18.	 JSON data parser testing valid data using
online tool access from http://jsonviewer.
stack.hu/

19.	 M. Singh, K. S. Dhindsa, “Enhancing
Interaction between Smartphones and Web
Services on Cloud for Improved Bandwidth
and Latency”, IJCSMC, 2; 177-185 (2013).

20.	 Google App Engine accessed via https://
developers.google.com/appengine (2014)

