
ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
December 2014,

Vol. 7, No. (3):
Pgs. 382-384

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

A Review and Analysis on Cyclomatic Complexity

RAMESH M. PATELIA and SHILPAN VYAS

Anand Mercantile College of Science, Management and Computer Technology,
Anand, Gujarat, India.

(Received: November 01, 2014; Accepted: December 10, 2014)

AbSTRACT

 Cyclomatic complexity is software metric used in structural testing. The purpose of the paper
is to describe the analysis on Cyclomatic complexity with an example. The Cyclomatic complexity is
computed using the flow graph of the program: the nodes of the graph correspond to one or more
code statement and the edges connect two nodes. Based on the flow graph how to find Cyclomatic
complexity is described here.

Key words: Cyclomatic Complexity, Flow graph, Predicate node, connected components.

INTROdUCTION

 Cyclomatic complexity is a software
metric (measurement). It was developed by Thomas
J. McCabe, Sr. in 1976 and is used to indicate the
complexity of a program. It is a quantitative measure
of the complexity of programming instructions.
It directly measures the number of linearly
independent paths through a program’s source
code. It is one of the metric based on not program
size but more on information/control flow.

Cyclomatic Complexity
 The Cyclomatic Complexity is software
metric that provides quantitative measures of logical
complexity of a program.

basic Concepts
 The cyclomatic complexity of a section of
source code is the count of the number of linearly
independent paths through the source code. For
instance, if the source code contained no decision
points such as IF through the code. If the code had
a single IF statement containing a single condition,
there would be two paths through the code: one
path where the IF statement is evaluated as TRUE
and one path where the IF statement is evaluated
as FALSE.

Flow graph notation for a program
 Flow Graph notation for a program defines
several nodes connected through the edges. Below
are Flow diagrams for statements like if-else, While,
until and normal sequence of flow.

383 PATELIA & VyAS, Orient. J. Comp. Sci. & Technol., Vol. 7(3), 382-384 (2014)

 The Cyclomatic Complexity is computed
in one of five ways:

1) The number of regions of the flow graph
corresponds to the Cyclomatic complexity.

2) The Cyclomatic complexity, V(G), for a graph
G is defined as V(G) = E – N + 2

 Where E is the number of flow graph edges
and N is the number of flow graph nodes.

3) The Cyclomatic complexity, V(G), for a graph
G is defined as V(G) = E – N + 2P

 Where E is the number of flow graph edges,
N is the number of flow graph nodes and P
is connected components.

4) The Cyclomatic complexity, V(G), for a graph
G is also defined as V(G) = P + 1

 Where P is the number of predicate nodes
contained in the flow graph G. The predicate
node is a node that has of outdegree two i.e.
Binary node.

5) The Cyclomatic complexity, V(G), for a
graph G is also defined as total number of
independent path of flow graph.

 The problem with Cyclomatic Complexity
is that, it fails to calculate for different conditional
statements (control flow statements) and for nesting
level of various control flow structures.

Example
Consider the following pseudo code:
if(A>B) and (C>D) then
 A = A + 1
 B = B + 1
end if

 To find the Cyclomatic complexity for
above code we have to draw a flow graph.

 Among the two conditions, the first
condition A>B assumes a node 1 and second

condition C>D assumes node 2. The two statements
under this statement

 A = A + 1 and B = B +1 is our node 3. Node
4 of a graph is next statement of end if statement.

The following table gives the summary of Condition
and Statement evaluation

Flow graph

A>B C>D Remark on flow
(Node 1) (Node 2) of a graph
T T 1->2->3->4
T F 1->2->4
F T 1->4
F F 1->4

1

2
1

3
1

4
R1

R2

R3

 In above flow graph node is represented
by digits as 1, 2, 3 and 4. Arrow is used to represent
edges of a graph. Region of a graph is represented
by R1, R2 and R3.

V(G) = E – N + 2
 = 5 - 4 + 2
 = 3

384PATELIA & VyAS, Orient. J. Comp. Sci. & Technol., Vol. 7(3), 382-384 (2014)

Cyclomatic Complexity Calculation
 The Cyclomatic Complexity of a graph is
calculated as follow:

Using Region
 The number of regions of the flow graph
corresponds to the Cyclomatic complexity.

V(G) = No. of region
 = 3

Using Connected Components
The Cyclomatic complexity
V(G) = E – N + 2P
 = 5 - 4 + 2 (Here, P is 1)
 = 3

Using Predicate nodes
The Cyclomatic complexity
V(G) = P + 1
 = 2 + 1 (Here, P is 2)
 = 3

Using independent path
 It is equal to total number of independent
path of flow graph. Three independent path are:
1-2-3-4, 1-2-4, 1-4.

The Cyclomatic complexity
V(G) = Number of independent path
 = 3

Summary on Cyclomatic Complexity
 Cyclomatic complexity can be calculated
manually if the program is small. Automated tools
need to be used if the program is very complex as
this involves more flow graphs. Based on complexity
number, team can conclude on the actions that need
to be taken for measure.

 Following table gives overview on the
complexity number and corresponding meaning of
v (G):

Complexity Number Meaning

1-10 Structured and well written codeHigh TestabilityCost and Effort is less
10-20 Complex CodeMedium TestabilityCost and effort is Medium
20-40 Very complex CodeLow TestabilityCost and Effort are high
>40 Not at all testableVery high Cost and Effort

CONCLUSION

 Even though there are number of software
metric, this article is used how to find thecomplexity

of a program. The value of a Cyclomatic complexity
is used to judge the quality of a routine. The
Cyclomatic complexity in the range of 3 to 7 is
typical of well-structured routines.

REFERENCES

1. Roger S. Pressman. Software Engineering:
A Practitioner’s Approach, Fifth Edition,
McGraw Hill International Edition.

2. Pankaj Jalote. An integrated approach to
Software Engineering, Second Edition,
Narosa Publishing House.

3. Richard Fairley. Software Engineering
Concepts, Tata McGraw-Hill Edition 1997,
New Delhi.

4. http://en.wikipedia.org/wiki/Cyclomatic_
complexity

5. `ht tp: / /www.guru99.com/cyclomatic-
complexity.html

