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Abstract

	 Organizing data into sensible groupings is one of the most fundamental modes of 
understanding and learning1 Clustering is one of the most important data mining techniques that 
partitions data according to some similarity criterion. The problems of clustering categorical data 
have attracted much attention from the data mining research community recently2.The original 
k-means algorithm3 or known as Lloyd’s algorithm, is designed to work primarily on numeric data 
sets. This prohibits the algorithm from being applied to definite  data clustering, which is an integral 
part of data mining and has attracted much attention recently In this paper delineates increase to 
the k-modes algorithm for clustering definite data. By modifying a simple corresponding Variation 
measure for definite entities, a heuristic approach was developed in4, 12, which allows the use of 
the k-modes paradigm to obtain a cluster with strong intra-similarity, and to efficiently cluster large 
definite data sets. The main aim of this paper is to derive severely the updating formula of the k-modes 
clustering algorithm with the new Variation measure, and the convergence of the algorithm under 
the optimization framework.
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INTRODUCTION

	 Advances in sensing and storage 
technology and dramatic growth in applications 
such as Internet search, digital imaging, and video 
surveillance have created many high-volume, and 
high dimensional data sets1.

	 The widespread use of computer and 
information technology has made extensive data 
collection in business, manufacturing and medical 
organizations a routine task. This explosive growth 
in stored data has generated an urgent need for new 

techniques that can transform the vast amounts of 
data into useful knowledge. Data mining is, perhaps, 
most suitable for this need5.

	 Clustering is an important data mining 
technique that groups together similar data 
records. The k-modes algorithm6, 7 has become a 
popular technique involving definite data clustering 
problems in different application domains (e.g., [8, 
9]). The k-modes algorithm as an extension of the 
k-means algorithm by using a simple corresponding 
Variation measure for definite entities, modes 
instead of means for clusters, and a frequency-
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based method to update modes in the clustering 
process to minimize the clustering value function. 
The goal of data clustering, also known as cluster 
analysis, is to discover the natural grouping(s) 
of a set of patterns, points, or objects. Webster 
(Merriam-Webster Online Dictionary, 2008)1.These 
increases have removed the numeric-only limitation 
of the k-means algorithm and enable the k-means 
clustering process to be used to efficiently cluster 
large definite data sets from real world databases. 
An equivalent nonparametric approach to deriving 
clusters from definite data is presented in10. A 
note in11 discusses the equivalence of the two 
independently developed k-modes approaches.

	 The distance between two entities 
computed with the simple corresponding similarity 
measures either 0 or 1. This often outputs in clusters 
with weak intra-similarity. Recently, He et al4 and 
San et al12 independently introduced a new Variation 
measure to the k-modes clustering process to 
enhance the accuracies of the clustering outputs. 
Their main idea is to use the relative attribute 
frequencies of the cluster modes in the similarity 
measure in the k-modes objective function. This 
modification allows the algorithm to recognize a 
cluster with weak intra-similarity, and therefore 
assign less similar entities to such cluster, so that 
the generated clusters have strong intra-similarities. 
Experimental outputs in4 and12 have shown that the 
modified k-modes algorithm is profitable.

	 The aim of this paper is to give a plain proof 
that the entity cluster membership task method 
and the mode updating formulae under the new 
Variation measure indeed minimize the objective 
function. We also prove that using the new Variation 
measure the convergence of the clustering process 
is guaranteed. In4 and12, the new Variation measure 
was introduced heuristically. With the formal proofs, 
we assure that the modified k-modes algorithm can 
be used safely.

	 This paper is organized as follows. In 
Section 2, we review the k-modes algorithm. In 
Section 3, we study and analyze the k-modes 
algorithm with the new similarity measure. In 
Section 4, examples are given to illustrate the 
profitability of the k-modes algorithm with the new 

similarity measure. Finally, a concluding remark is 
given in Section 5.

The k-modes Algorithm
	 The data is assumed to be in a table, where 
each row (tuple) represents facts about an object. 
A data table is also called an information system. 
Objects in the real world are sometimes described 
by categorical information system1.the collection of 
entities to be clustered is stored in a database table 
T defined by a set of attributes,S1 ,S2 ………….,Su. 
Each attribute Su delineates a domain of values, 

denoted by DOM ( ), associated with a defined 
semantic and a data type. In this paper, we only 
assume two general data categories, numeric and 
definite and assume other types used in database 
systems can be mapped to one of these two types. 
The domains of attributes associated with these two 
types are called numeric and definite respectively. A 
numeric domain consists of real numbers. A domain 
DOM (Su) is defined as definite if it is countable and 

unordered, e.g., for any o,  p DOM ( ), either o= 
por o=p, see for instance14.

	 An ob ject  B in   can be log ica l ly 
represented as a conjunction of attribute-value 

pairs[S1=B1]^[S2=B2] ^ ….. ^ [Su=Bu] where  

DOM (Sj) for 1   j  u. Without ambiguity, we 
represent Bas a vector [S1,S2………..u].B is called 
a definite entity if it has only definite values. We 
consider every entity has exactly u attribute values. 
If the value of an attribute is missing, then we denote 
the attribute value of  by .

	 .Let B=( , ……. , )be a set of v 

objects. Object  is represented as [

….…, ].We write  =  if  =  for 1< 

j<u. The relation  =  does not mean that  and 

 are the same entity in the real world database, 
but rather that the two entities have equal values 

in attributes ,  ….… .

	 The k-modes algorithm, introduced 
and developed in [6, 7], has made the following 
modifications to the k-means algorithm: (i) using a 
simple corresponding Variation measure for definite 
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entities, (ii) replacing the means of clusters with the 
modes, and (iii) using a frequency based method to 
find the modes. These modifications have removed 
the numeric-only limitation of the k-means algorithm 
but maintain its efficiency in clustering large definite 
data sets [7].

	 Let Band C be two definite objects 

represented by [ …... ] and [ ….… 

] respectively. The simple matching Variation  
measure between Band C is defined as follows:

D(X, Y)   	 ...(1)                                                           

Where

	 It is easy to verify that the function d 
defines a metric space on the collection of definite 
entities. Traditionally, the simple corresponding 
approach is often used in binary variables which 
are converted from definite variables ([3], pp.28-29). 
We note that D is also a kind of generalized.

Hamming distance
	 Hamming is the percentage of bits that 
differ, it is suitable for binary data only. Each centroid 
is the component-wise median of points in that 
cluster. The k-modes algorithm uses the k-means 
paradigm to cluster definite data. The objective of 
clustering a set of definite objects into k clusters is 
to find Rand that minimize

Q (R, G) =  	
...(2)

subject to

	
...(3)     

 	 ...(4)
and

0 < ,	 ...(5)

	 Whereof (<v) is a known number of 
clusters, R= [] is a k-by-v{0, 1}matrix, G= [,………,], 
and is the  cluster center with the definite  attributes 
, ,…………,Su.

	 Minimization of Qin (2) with the constraints 
in (3), (4) and (5) forms a class of constrained 
nonlinear optimization problems whose solutions are 
unknown. The usual method towards optimization 
of Qin (2) is to use partial optimization for Grand 
R. In this method we first fix and find necessary 
conditions on R to minimize Q. Then we fix Rand 
minimize Q with respect to G. This process is 
formalized in the k-modes algorithm as follows.

Algorithm The k-modes algorithm
Solution Approach by k-modes algorithm

1. Choose an initial point  Determine R1 
such that Q (R, G1) is minimized. Set x= 1.

2. Determine  such that Q ( ) is 
minimized.

If Q ( ) = Q ( ) then stop; otherwise 
go to step 3.

3. Determine  such that Q(  
is minimized.

4. If Q(  = Q( ),then stop; 
otherwise set x=x+ 1 and go to Step 2.

5. The matrices Rand G are calculated according 
to the following two theorems.

Theorem 1: Let  be fixed and consider the 
problem.

 Subject to (3), (4) and (5)
The minimize is given by 

 = 
	

Theorem 2: Let B be a set of definite entities 

delineates by definite attributes ………,…..   

and DOM ) = , }, where 

  is the number of categories of attribute  for  
1   j  u. Let the cluster centers  be represented 
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by [ ] for  1  fe. Then the 

quantity ,  is minimized if 

 where

1 

For 1<j<u. Here |B| denotes the number of elements 
in the set B.

	 We remark that the minimum solution 
is not unique, so = 1 may arbitrarily be assigned 
to the first minimizing index f, and the remaining 
entries of this column are put to zero. This problem 
occurs frequently when clusters have weak intra-
similarities, i.e., the attribute modes do not have 
high frequencies.

	 Let us consider the following example 
to demonstrate the problem using the simple 
matching Variation. The data set is described with 
three definite  attributes  (2 categories: 1 or2),  (2 
categories: 1 or 2) and  (5 categories: 1, 2, 3, 4 or 
5) and there are two clusters with their modes and 
their three objects:
	

	 The above example shows that the 
similarity measure does not represent the real 
semantic distance between the objects and the 
cluster mode. For example, if an object B= [1 1 5]is 
assigned to one of the clusters, then we find that 

D ( , B) = 1 = D ( , B). Therefore we cannot 
determine the assignment of B properly.
 
The New Variation Measure
	 He et al. [12] and San et al. [4] independently 
introduced a Variation measure in the k-modes 

objective function. More precisely, they minimize

 (R, G)= ( ) 	 ...(6)

Subject to the conditions same as in (3), (4) and 

(5). The Variation measure  is defined 
as follows:

 =  	 ...(7)
Where

Where |  is the number of objects in the  
cluster, given by

                           |  = |  |

And  is the number of objects with category 

 of the  attribute in the  cluster, given by

	 According to the definition of , the 
dominant level of the mode category is considered 
in the calculation of the Variation measure. When 

the mode category is 100% dominant, we have |  

=  and therefore the corresponding function 
value is the same as in (1) in the original k-modes 
algorithm.
Let us consider the example in Section 2 again; 

the computed parameters  are given as 
follows:

	 Now if an object B= [1 1 5] is assigned 
to one of the clusters, the new Variation  measure 
can represent the real semantic distance, we have 

Objects /	 S1	 S2	 S3	 Objects /	 S1	 S2	 S3 
Attributes				    Attributes	  
	  	  	  
1	 1	 1	 1	 4	 1	 2	 1
2	 1	 1	 2	 5	 2	 1	 3
3 	 1	 1	 3	 6 	 1	 1	 4
Cluster 1	 1	 1	 1	 Cluster 2	 1	 1	 1
Mode 1				    Mode 2

Categories	 S1	 S2	 S3	 Categories	 S1	 S2	 S3 
/ Attributes				    / Attributes	
1        	 3	 3	 1	 1        	 2	 2	 1
2	 0	 0	 1	 2	 1	 1	 0
3 	 Nil	 Nil	 1	 3 	 Nil	 Nil	 1
4	 Nil	 Nil	 0	 4	 Nil	 Nil	 0
5	 Nil	 Nil	 0	 5	 Nil	 Nil	 0
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 ( , B) = 1 and  ( , B) =5/3. The object B 
is assigned to the first cluster properly.

	 Now the key issue is to derive severely 
the updating formula of the k-modes clustering 
algorithm with the new Variation measure, similar 
to Theorem 2. In [4, 12], the authors presented 
heuristically the updating formula only using the 
k-modes framework. We remark that the matrix R 
can be calculated according to Theorem 1. Theorem 
3 below show severely the updating formula of 
Gin the k-modes clustering algorithm with the new 
Variation measure.

Theorem 3 Let B be a set of definite  objects 

described by definite  attributes , , ,…………..,  
and DOM( ) = 

where   is the number of categories of attribute 

 for  1 . Let the cluster centers  be 

represented by  for 1 

. Then the quantity  

is minimized if  where

For 1
Proof: For a given R, all the inner sums of the 

quantity 

are nonnegative and independent. 

	 Minimizing the quantity is equivalent to 

minimizing each inner sum. We write the  

inner sum (1  f  and 1  j ) as

when,  we have

= 

    + 

=  

	 It is clear that is minimized if  
is maximal for 1 . Thus the term 

must be maximal. The 
result follows. According to (8), the category of 

attribute  of the cluster mode  is determined 

by the mode of categories of attribute  in the set 
of objects belonging to cluster f.

	 By comparing the results in Theorems 2 
and 3, the cluster centers are updated in the same 
manner even we use different distance functions 
in (1) and (7) respectively. It implies that the same 
k-mode algorithm can be used. The only difference 

is that we need to count and store  and  in 
each iteration for the distance function evaluation.

	 Combining Theorems 1 and 3 with the 
algorithm forms the k-modes algorithm with the new 
Variation measure, in which the modes of clusters 
in each iteration are updated according to Theorem 
3 and the partition matrix is computed according to 
Theorem 1. We remark that the updating formulae 
of Rand Gin Theorems 1 and 3 respectively are 
determined by solving two minimization sub 
problems from (2):

 fo r  a 
given R
and

   for a 
given G
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	 The convergence of the k-modes algorithm 
with the new Variation measure can be obtained as 
in Theorem 4 below.

	 Theorem 4 the k-modes algorithm with the 
new Variation measure converges in a finite number 
of iterations.

	 Proof: We first note that there are only 

a finite number (M= ) of possible cluster 
centers (modes). We then show that each possible 
centre appears at most once by the k-modes 

algorithm. Assume that  where 

. According to the k-modes algorithm we 

can compute the minimizes  and  for G 

= and G =   respectively.
Therefore, we have

	 However, the sequence  (. , .) 
generated by the k-modes algorithm with the new 
Variation measure is strictly decreasing. Hence the 
result follows.

	 The result of Theorem 4 guarantees the 
decrease of the objective function values with 
respect the iterations of the k-modes algorithm with 
the new Variation measure.

Results

	 A comprehensive performance study 
has been conducted to evaluate our method. 
In this section, we delineate those experiments 
and their results. In [4, 12], experimental outputs 
are given to illustrate that the k-mode algorithm 
with the new Variation measure performs better 
in clustering accuracy than the original k-mode 
algorithm. The main aim of this section is to 
illustrate the convergence output and evaluate 
the clustering performance and efficiency of the 
k-mode algorithm with the new Variation measure. 
We will use a soybean dataset obtained from the 
UCI Machine Learning Repository [13] to generate 
several examples to test the k-modes algorithm with 
the new Variation measure. The soybean dataset 

includes 47 records, each of which is described by 
35 attributes. It is an experimental comparison of 
the two methods of knowledge acquisition in the 
context of developing an expert system for soybean 
disease diagnoses. Each record is labeled as one 
of the4 diseases: L1, L2, L3 and L4. Except for L4 
which has 17 instances, all other diseases only have 
10 instances each. We only selected 21 attributes 
in these experiments, because the other attributes 
only have one category. We carried out 100 runs 
of the k-mode algorithm with the new Variation 
measure and the original k-mode algorithm on 
the data set. In each run, the same initial cluster 
centers were used in both algorithms. In Figure 1, 
we show the 100 curves, where each curve refers 
to the objective function values with the iterations 
of the k-mode algorithm using the new Variation 
measure. It is clear from the figure that the objective 
function values are decreasing in each curve. 
With our results in Theorem 3, we show that the 
objective function values are decreasing when the 
new similarity measure is used. We also see Figure 
1 that the algorithm stops after a Finite number of 
iterations, i.e., the objective function values does not 
decrease any more. This is exactly the results we 
showed in Theorem 4. The k-modes algorithm with 
the new Variation measure can be used safely.

	 To evaluate the performance of clustering 
algorithms, we consider three measures: (i) 
accuracy (AC), (ii) precision (PE) and (iii) recall 

Table. 1: The summary results for 100 runs of 
two algorithms on the soybean data set.

                       Mean		           Standard Deviation
	 New	 Original	 New	 Original
	 Variation 	 K-modes	 Variation 	K-modes

AC	 0.9213	 0.890	 0.1043	 0.1009
PR	 0.9565	 0.882	 0.0679	 0.0901
RE	 0.9490	 0.870	 0.0680	 0.0842

	                  Minimum		                   Maximum
	 New 	 Original	 New 	 Original
	 Variation	 K-modes	 Variation	 K-modes

AC	 0.7980	 0.690	 1.0000	 1.0000
PR	 0.7890	 0.7070	 1.0000	 1.0000
RE	 0.7730	 0.7080	 1.0000	 1.0000
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(RE). Objects in a  cluster are assumed to 
be classified either correctly or incorrectly with 
respect to a given class of objects. Let the number 

of correctly classified objects be , let the number 

of incorrectly classified objects be , and let the 
number of objects in a given class but not being in 

a cluster be . The clustering accuracy, recall and 
precision are defined as follows:

AC=  ,     PE=   and 

RE = 

Respectively Table 1 shows the summary results 
for both algorithms. According to Table 1,the 
performance of the k-mode algorithm with the new 
similarity measure is better than the original k-mode 
algorithm for AC, PE and RE.

	 Next we test the scalability of the k-mode 
algorithm with the new Variation measure. Synthetic 
definite data sets are generated by the method 
in [7] to evaluate the algorithm. The number of 
clusters, attributes and categories of synthetic 

data is ranged in between 3 to 24.The number of 
objects is ranged in between 10,000 and 80,000. 
The computational results are performed by using 
a machine with an Apple iBook G4 and 1Gega 
RAM. The computational times of both algorithms 
are plotted with respect to the number of clusters, 
attributes, categories and objects, while the other 
corresponding parameters are fixed. 

	 The k-mode algorithm with the new 
similarity measure requires more computational 
times than the original k-mode algorithm. It is an 
expected outcome since the calculation of the 
new Variation measure requires some additional 
arithmetic operations. However, according to the 
tests, the k-mode algorithm with the new Variation 
measure is still scalable, i.e., it can cluster definite 
objects efficiently.

Conclusion

	 In this paper, we state extremely rules 
the updating formula of the k-modes clustering 
algorithm with the new Variation measure, and the 
convergence of the algorithm under the optimization 
structure. Experimental results show that the 
k-mode algorithm with the new Variation measure 
is adequate and effective in clustering definite data 
sets.
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