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Abstract
Altera SDK for OpenCL allows programmers to write a simple code in OpenCL 
and abstracts all Field programmable gate array (FPGA) design complexity. 
The kernels are synthesized to equivalent circuits using the FPGA hardware 
recourses Adaptive logic modules (ALMs), DSPs and Memory blocks. In this 
study, we developed a set of fifteen different benchmarks, each of which has 
its own characteristics. Benchmarks include with/without loop unrolling, have/
have not atomic operations, have one/multiple kernels per single file, and in 
addition to one/more of these characteristics are combined. Altera OpenCL 
v14.0 adds more features compared with previous versions. A set of parameters 
chosen to compare the two OpenCL SDK versions Logic utilization (in ALMs), 
total registers, RAM Blocks, total block memory bits, and clock frequency.
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Introduction
OpenCL stands for Open Computing Language, 
which is an open framework for parallel programming 
executed across heterogeneous platforms CPUs, 
GPUs and DSPs.1 OpenCL programming model 
consists of two programs; first, host program, which 
is usually written in C/C++, and it is responsible 
for loading the OpenCL programs, memory 
management, data transfer and errors checking.2 

Second program is the device code, which is written 
in OpenCL, and can be run on the available devices 
such as GPUs, DSPs, or FPGAs.

In OpenCL, kernel could be executed by a large 
number of work-items (threads). Work-items are 
organized in one, two or three dimensions, and are 

divided into blocks which can be multi-dimensions. 
Each block is called a workgroup. The size of a 
workgroup can be up to 1024 or 2048 work-items 
depending on device capability. All work-items 
inside the workgroup can be synchronized using 
barrier. However, synchronization cannot be 
between workgroups, and they could be executed  
in any order.7

The Altera SDK for OpenCL allows the programmer 
to implement parallel algorithms on FPGA with 
a high level of hardware abstraction. The Altera 
offline compiler (AOC) is used to generate  
the Altera executable file, which can be run on the 
FPGA (DE5 in this study. Each kernel is synthesized 
to an equivalent circuit on the FPGA board, and 
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each circuit contains a set of hardware recourses. 
FPGAs implement parallel algorithm using pipelining 
architecture where input data passes through  
a sequence of stages.4,5 FPGA main resources 
include Adaptive logic modules (ALM), digital signal 
processing (DSP) and memory blocks.

AOC is used to create a hardware configuration 
file. Some parameters can be combined for the 
optimization purpose. Compilation process is very 
length, which can range anywhere between minutes 
and several days. In the set of benchmarks here, the 
compilation time ranges between one hour and few 
minutes up to six hours and few minutes.

The Altera SDK 14.0 has been developed to include 
new features, such as supporting hard floating 
points, channel extensions, supporting new types 
(float 3) and other features.5  Our motivation behind 
this study is to shows how these new features could 
affect the performance by compiling and running  
set of benchmarks.

FPGAs are widley used to improve the performance 
in several scientific applications.7-26 The FPGA 
device used here is Stratix V ALM is developed 
to implement most of function efficiently. Each 
ALM contains a look-up table (eight inputs),  
two dedicated adders and four dedicated registers. 
The LUT can implement any 6-input logic functions 
and a number of 7-input functions. It can also be 
used as two separated LUTs for efficient using.   
The block diagram for ALM is shown in figure-1.6

Expermintal Setup Environments

• Linux  2.6.32-504.1.3.el6.x86_64 
• Altera SDK , 64-Bit Offline Compiler Ver. 14.0
• Altera SDK , 64-Bit Offline Compiler Ver. 13.1
• gcc version 4.4.7
• DE5 Board (StratixV ,Dev 5SGXEA7N2F45C2)

Experiment and Results Discussion
Several studies handel the issue of comparing 
different compilers.3,4 To compare the two Altera SDK 
versions, a set of fifteen benchmarks were developed 
for comparison purpose. These benchmarks are 
varied in their characteristics as follows none, one,  
or more atomic operations, with/without loop 
unrolling, single/multiple kernels per file.

The benchmarks written can be classified as pure 
memory access, where the whole kernel is written 
using reads or writes memory operations. The read/
write operations could be atomic or non-atomic, 
using same or different atomic operation. “atomic 
add” and atomic exchange are used in this study. 
The other class is consisted of a set of arithmetic 
operations on floating points. These operations 
include four main operations (addition, subtraction, 
division, and multiplication). The OpenCL kernels 
can repeat the same code many times, where 
loop unrolling is used in some kernels. The same 
kernels run again but without loop unrolling in other 
benchmarks. The last thing tested using theses 
benchmarks is repeating the same kernel in the file 
up to seven times, or using more than one kernel with 
different characteristics. In summary, a set of fifteen 
benchmarks summaries all of the above attributes.
A set of parameters are concerned here: logic 
utilization in ALMs, RAM blocks, total memory bits, 
clock frequency, total registers and compile time. 
Other parameters might be added here are size  
of configuration and backup files created. Our results 
show that the size of the files created by Altera 14.0 
is less by 400MBs

The FPGA device used in the experiments contains 
234,720 ALMs, 256 DSP Blocks, 52,428,800 block 
memory bits and 2,560 RAM Blocks.

Fig. 1: Adaptive logic module (ALM) 
block diagram6
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Examining both tables, it is clear that the Altera SDK 
14.0 shows better optimization of resources, and 
requires less compilation time. On the other hand, 
the clock frequency may not be enhanced, but may 
be decreased. Dividing the values in Table II by 
the corresponding values in Table I and averaging 

each row will generate the results shown in Table III. 
This gives a comparison between the two versions 
considering the parameters mentioned above. 
Taking the average effects of all parameters, every 
parameter is normalized to the Altera SDK 13.1 
corresponding parameter.

Table 3: Comparison Results

 Logic Total Ram Total  block Clock Compile time
 Utlization Registers blocks memory bits Frequencey in minuites

Altera 13.1 1 1 1 1 1 1
Altera 14.0 0.9 0.86 0.74 0.96 0.99 0.89

Fig. 2 :Altera SDK 14.0 vs. Altera SDK 13.1 Comparison results

Conclusion
Our study shows that using the Altera SDK 14.0 for 
the previous benchmarks provides better recourses 
utilization. We need fewer resources compared to 
the Altera SDK 13.0. Although the clock speed may 
decrease or increase, the changes is insignificant. 
We recommend using Altera SDK14.0 instead  
of Altera SDK 13.0. In future paper, the comparison 
will handle the most recent Intel FPGA compilers.
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