
OpenCL Altera SDK v.14.0 vs. v. 13.1 Benchmarks Study

ABEDALMUHDI ALMOMANY* and AMIN JARRAH

Computer Engineering Department, Yarmouk University, Irbid, Jordan.

Abstract
Altera SDK for OpenCL allows programmers to write a simple code in OpenCL
and abstracts all Field programmable gate array (FPGA) design complexity.
The kernels are synthesized to equivalent circuits using the FPGA hardware
recourses Adaptive logic modules (ALMs), DSPs and Memory blocks. In this
study, we developed a set of fifteen different benchmarks, each of which has
its own characteristics. Benchmarks include with/without loop unrolling, have/
have not atomic operations, have one/multiple kernels per single file, and in
addition to one/more of these characteristics are combined. Altera OpenCL
v14.0 adds more features compared with previous versions. A set of parameters
chosen to compare the two OpenCL SDK versions Logic utilization (in ALMs),
total registers, RAM Blocks, total block memory bits, and clock frequency.

CONTACT Abedalmuhdi Almomany emomani@yu.edu.jo Computer Engineering Department, Yarmouk University, Irbid, Jordan.

© 2022 The Author(s). Published by Oriental Scientific Publishing Company.
This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY).
Doi: http://dx.doi.org/10.13005/ojcst15.010203.03

Article History
Received: 19 October
2022
Accepted: 21 November
2022

Keywords
ALM; Altera; AOC;
CPU; DE5; FPGA;
GPU; OpenCL.

 Oriental Journal of Computer Science and Technology
www.computerscijournal.org

ISSN: 0974-6471, Vol. 15, No. (1-2-3) 2022, Pg. 21-26

Introduction
OpenCL stands for Open Computing Language,
which is an open framework for parallel programming
executed across heterogeneous platforms CPUs,
GPUs and DSPs.1 OpenCL programming model
consists of two programs; first, host program, which
is usually written in C/C++, and it is responsible
for loading the OpenCL programs, memory
management, data transfer and errors checking.2

Second program is the device code, which is written
in OpenCL, and can be run on the available devices
such as GPUs, DSPs, or FPGAs.

In OpenCL, kernel could be executed by a large
number of work-items (threads). Work-items are
organized in one, two or three dimensions, and are

divided into blocks which can be multi-dimensions.
Each block is called a workgroup. The size of a
workgroup can be up to 1024 or 2048 work-items
depending on device capability. All work-items
inside the workgroup can be synchronized using
barrier. However, synchronization cannot be
between workgroups, and they could be executed
in any order.7

The Altera SDK for OpenCL allows the programmer
to implement parallel algorithms on FPGA with
a high level of hardware abstraction. The Altera
offline compiler (AOC) is used to generate
the Altera executable file, which can be run on the
FPGA (DE5 in this study. Each kernel is synthesized
to an equivalent circuit on the FPGA board, and

22ALMOMANY & JARRAH, J. Comp. Sci. & Technol., Vol. 15(1-2-3) 21-26 (2022)

each circuit contains a set of hardware recourses.
FPGAs implement parallel algorithm using pipelining
architecture where input data passes through
a sequence of stages.4,5 FPGA main resources
include Adaptive logic modules (ALM), digital signal
processing (DSP) and memory blocks.

AOC is used to create a hardware configuration
file. Some parameters can be combined for the
optimization purpose. Compilation process is very
length, which can range anywhere between minutes
and several days. In the set of benchmarks here, the
compilation time ranges between one hour and few
minutes up to six hours and few minutes.

The Altera SDK 14.0 has been developed to include
new features, such as supporting hard floating
points, channel extensions, supporting new types
(float 3) and other features.5 Our motivation behind
this study is to shows how these new features could
affect the performance by compiling and running
set of benchmarks.

FPGAs are widley used to improve the performance
in several scientific applications.7-26 The FPGA
device used here is Stratix V ALM is developed
to implement most of function efficiently. Each
ALM contains a look-up table (eight inputs),
two dedicated adders and four dedicated registers.
The LUT can implement any 6-input logic functions
and a number of 7-input functions. It can also be
used as two separated LUTs for efficient using.
The block diagram for ALM is shown in figure-1.6

Expermintal Setup Environments

• Linux 2.6.32-504.1.3.el6.x86_64
• Altera SDK , 64-Bit Offline Compiler Ver. 14.0
• Altera SDK , 64-Bit Offline Compiler Ver. 13.1
• gcc version 4.4.7
• DE5 Board (StratixV ,Dev 5SGXEA7N2F45C2)

Experiment and Results Discussion
Several studies handel the issue of comparing
different compilers.3,4 To compare the two Altera SDK
versions, a set of fifteen benchmarks were developed
for comparison purpose. These benchmarks are
varied in their characteristics as follows none, one,
or more atomic operations, with/without loop
unrolling, single/multiple kernels per file.

The benchmarks written can be classified as pure
memory access, where the whole kernel is written
using reads or writes memory operations. The read/
write operations could be atomic or non-atomic,
using same or different atomic operation. “atomic
add” and atomic exchange are used in this study.
The other class is consisted of a set of arithmetic
operations on floating points. These operations
include four main operations (addition, subtraction,
division, and multiplication). The OpenCL kernels
can repeat the same code many times, where
loop unrolling is used in some kernels. The same
kernels run again but without loop unrolling in other
benchmarks. The last thing tested using theses
benchmarks is repeating the same kernel in the file
up to seven times, or using more than one kernel with
different characteristics. In summary, a set of fifteen
benchmarks summaries all of the above attributes.
A set of parameters are concerned here: logic
utilization in ALMs, RAM blocks, total memory bits,
clock frequency, total registers and compile time.
Other parameters might be added here are size
of configuration and backup files created. Our results
show that the size of the files created by Altera 14.0
is less by 400MBs

The FPGA device used in the experiments contains
234,720 ALMs, 256 DSP Blocks, 52,428,800 block
memory bits and 2,560 RAM Blocks.

Fig. 1: Adaptive logic module (ALM)
block diagram6

23ALMOMANY & JARRAH, J. Comp. Sci. & Technol., Vol. 15(1-2-3) 21-26 (2022)
Ta

bl
e

1:
 A

lte
ra

 1
3.

0
B

en
ch

m
ar

ks
 re

su
lts

A
lte

ra
 1

3.
1

B
en

ch
1

B
en

ch
2

B
en

ch
3

B
en

ch
4

B
en

ch
5

B
en

ch
6

B
en

ch
7

B
en

ch
8

B
en

ch
9

B
en

ch
10

 B
en

ch
ll

B
en

ch
l2

B

en
ch

13
 B

en
ch

l4

B
en

ch
l5

Lo
gi

c
ut

ilz
at

io
n

70
%

66

%

66
%

67

%

70
%

70

%

66
%

16

%

25
%

65

%

38
%

20

%

23
%

26

%

29
%

(A
LM

S)
To

ta
l r

eg
is

te
rs

31

77
85

29

85
05

29

82
46

30

09
35

31

80
41

31

85
01

30

03
12

53

89
3

86
15

3
30

57
56

14

34
13

72

39
7

84
43

9
97

48
5

10
66

50
R

AM
 B

lo
ck

s
71

.3
%

64

.3
%

64

.3
%

65

.4
%

72

%

71
.3

%

64
.3

%

11
%

17

.9
%

18

.6
%

23

.5
%

14

.1
%

11

.4
 %

20

%

21
.7

%
Pe

rc
en

ta
ge

To
ta

l B
lo

ck

12
%

11

%

11
%

11

%

12
%

12

%

12
%

3%

4%

18

%

5%

3%

3%

4%

4%
m

em
or

y
Bi

ts
Ac

tu
al

 C
lo

ck

18
9

20
3

20
0

19
3

19
4

19
3

19
5

30
5

24
6

18
7

20
6

21
1

18
5

19
4

20
3

fre
qu

en
ce

y
co

m
pi

le
 T

im
e

31

0
29

6
29

0
30

3
30

5
29

9
29

4
63

10

0
34

4
15

3
88

10

1
11

2
11

4
in

 m
in

ui
te

s

Ta
bl

e
2:

 A
lte

ra
 1

4.
0

B
en

ch
m

ar
ks

 re
su

lts

A
lte

ra
 1

4.
0

B
en

ch
1

B
en

ch
2

B
en

ch
3

B
en

ch
4

B
en

ch
5

B
en

ch
6

B
en

ch
7

B
en

ch
8

B
en

ch
9

B
en

ch
10

B

en
ch

ll
B

en
ch

l2
 B

en
ch

13
 B

en
ch

l4
 B

en
ch

l5

Lo
gi

c
ut

ilz
at

io
n

59
%

59

%

59
%

59

%

59
%

59

%

59
%

18

%

26
%

69

%

40
%

20

%

21
%

23

%

24
%

(A
LM

S)
To

ta
l r

eg
is

te
rs

25

37
21

 2
41

16
6

24
11

66

24
72

25

25
52

29

25
52

29

24
22

48

55
88

6
90

96
2

30
80

50

16
02

68

71
35

4
71

53
2

79
78

3
88

01
5

R
AM

 B
lo

ck
s

54
.7

%

37
.6

%

37
.6

%

42
.7

.%

56
.9

%

56
.9

%

38
.8

.%

11
%

17

.1
%

74

%

21
.6

%

14
.7

%

16
.7

%

18
.4

%

20
%

Pe
rc

en
ta

ge
To

ta
l B

lo
ck

10

%

9%

9%

10
%

11

%

11
%

9%

3%

3%

18

%

5%

3%

5%

6%

6%
m

em
or

y
Bi

ts
Ac

tu
al

 C
lo

ck

17
1.

18

6.

18
6.

19

7.

17
4.

17

4.

20
4.

26

6.

22
0.

18

5.

21
11

3
23

6.

24
1.

22

6.

23
1.

fre
qu

en
ce

y
co

m
pi

le
 T

im
e.

26

2
25

6.

25
7.

24

9.

25
7

25
0

24
7.

69

.
92

.
33

8.

14
8.

83

85

.
12

5.

99
.

m
in

ui
te

s

24ALMOMANY & JARRAH, J. Comp. Sci. & Technol., Vol. 15(1-2-3) 21-26 (2022)

Examining both tables, it is clear that the Altera SDK
14.0 shows better optimization of resources, and
requires less compilation time. On the other hand,
the clock frequency may not be enhanced, but may
be decreased. Dividing the values in Table II by
the corresponding values in Table I and averaging

each row will generate the results shown in Table III.
This gives a comparison between the two versions
considering the parameters mentioned above.
Taking the average effects of all parameters, every
parameter is normalized to the Altera SDK 13.1
corresponding parameter.

Table 3: Comparison Results

 Logic Total Ram Total block Clock Compile time
 Utlization Registers blocks memory bits Frequencey in minuites

Altera 13.1 1 1 1 1 1 1
Altera 14.0 0.9 0.86 0.74 0.96 0.99 0.89

Fig. 2 :Altera SDK 14.0 vs. Altera SDK 13.1 Comparison results

Conclusion
Our study shows that using the Altera SDK 14.0 for
the previous benchmarks provides better recourses
utilization. We need fewer resources compared to
the Altera SDK 13.0. Although the clock speed may
decrease or increase, the changes is insignificant.
We recommend using Altera SDK14.0 instead
of Altera SDK 13.0. In future paper, the comparison
will handle the most recent Intel FPGA compilers.

Acknowledgement
Nill

Funding
The author(s) received no financial support for the
research, authorship, and/or publication of this
article.

Conflict of Interest
This manuscript has not been submitted to, nor is
under review at, another journal or other publishing
venue. The authors certify that they have NO
affiliations with or involvement in any organization or
entity with any financial interest (such as honoraria;
educational grants, participation in speakers’
bureaus, membership, employment, consultancies,
stock ownership, or other equity interest, and expert
testimony or patent-licensing arrangements), or non-
fi nancial interest (such as personal or professional
relationships, affiliations, knowledge or beliefs)
in the subject matter or materials discussed
in this manuscript.

25ALMOMANY & JARRAH, J. Comp. Sci. & Technol., Vol. 15(1-2-3) 21-26 (2022)

1. Almomany, A., Al-Omari, A. M., Jarrah,
A., Tawalbeh, M., & Alqudah, A. (2020).
An OpenCL-based parallel acceleration of
a Sobel edge detection algorithm Using Intel
FPGA technology. South African Computer
Journal, 32(1), 3-26.

2. Abedalmuhdi, A., Wells, B. E., & Nishikawa,
K. I. (2017, April). Efficient particle-grid
space interpolation of an FPGA-accelerated
particle-in-cell plasma simulation. In 2017
IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing
Machines (FCCM) (pp. 76-79). IEEE

3. Almomany, A., Alquraan, A., & Balachandran,
L. (2014). GCC vs. ICC comparison using
PARSEC Benchmarks. International Journal
of Innovative Technology and Exploring
Engineering, 4(7).

4. Hiasat, R. H., &Almomani, A. A. (2013). Real
Time Radio Frequency Identification Vehicles
Data Logger Traffic Management System

5. Almomany, A., Ayyad, W. R., & Jarrah, A.
(2022). Optimized implementation of an
improved KNN classification algorithm using
Intel FPGA platform: Covid-19 case study.
Journal of King Saud University-Computer
and Information Sciences

6. ht tp : / /www.al tera.com/devices/ fpga/
stratix-fpgas/about/fpga-architecture/stx-
architecture.html

7. Almomany, A. M. (2017). Efficient openCL-
based particle-in-cell simulation of auroral
plasma phenomena within a commodity
spat ia l ly reconf igurab le comput ing
environment

8. Nishikawa, K., Almomany, A., & Wells,
B. (2016, April). Two-dimensional PIC
simulations of double layers in the upward
current region of the aurora with quasi-dipole
magnetic fields. In EGU General Assembly
Conference Abstracts (pp. EPSC2016-3037)

9. Jarrah, A., Almomany, A., Alsobeh, A. M.,
& Alqudah, E. (2021). High-performance
implementation of wideband coherent signal-
subspace (CSS)-Based DOA algorithm on
FPGA. Journal of Circuits, Systems and
Computers, 30(11), 2150196

10. Jarrah, A., Haymoor, Z. S., Al-Masri, H. M.,
& Almomany, A. (2022). High-Performance
Implementation of Power Components
on FPGA Platform. Journal of Electrical
Engineering & Technology, 17(3), 1555-1571

11. Almomany, A., Sewell, S., Wells, B. E., &
Nishikawa, K. I. (2017). A study of V-shaped
potential formation using two-dimensional
particle-in-cell simulations. Physics of
Plasmas, 24(5), 052305.

12. Almomany, A., Jarrah, A., & Al Assaf,
A. (2022). FCM Clustering Approach
Optimization Using Parallel High-Speed Intel
FPGA Technology. Journal of Electrical and
Computer Engineering, 2022

13. Almomany, A., Al-Omari, A. M., Jarrah,
A., & Tawalbeh, M. (2020). Discovering
regulatory motifs of genetic networks using
the indexing-tree based algorithm: a parallel
implementation. Engineering Computations

14. Jarrah, A., Al-Tamimi, A. K., &Albashir, T.
(2018). Optimized parallel implementation of
extended Kalman filter using FPGA. Journal
of Circuits, Systems and Computers, 27(01),
1850009

15. Al Bataineh, A., Kaur, D., & Jarrah, A. (2018,
July). Enhancing the parallelization of
backpropagation neural network algorithm
for implementation on fpga platform. In
NAECON 2018-IEEE National Aerospace
and Electronics Conference (pp. 192-196).
IEEE

16. Jarrah, A., Jamali, M. M., & Hosseini, S. S.
S. (2014, June). Optimized FPGA based
implementation of particle filter for tracking
applications. In NAECON 2014-IEEE National
Aerospace and Electronics Conference (pp.
233-236). IEEE

17. Alqudah, E., & Jarrah, A. (2020). Parallel
implementation of genetic algorithm on
FPGA using Vivado high level synthesis.
International Journal of Bio-Inspired
Computation, 15(2), 90-99.

18. Jarrah, A., & Jamali, M. M. (2014, November).
Optimized FPGA based implementation of
discrete wavelet transform. In 2014 48th
Asilomar Conference on Signals, Systems

References

26ALMOMANY & JARRAH, J. Comp. Sci. & Technol., Vol. 15(1-2-3) 21-26 (2022)

and Computers (pp. 1839-1842). IEEE.
19. Jarrah, A., & Jamali, M. (2013). Software

tool for efficient FPGA design of direct data
domain approach for space-time adaptive
processing. Electronics letters, 49(13), 789-
791.

20. Al Bataineh, A., & Jarrah, A. (2022). High
performance implementation of neural
networks learning using swarm optimization
algorithms for EEG classification based on
brain wave data. International Journal of
Applied Metaheuristic Computing (IJAMC),
13(1), 1-17.

21. Jarrah, A. A., & Jamali, M. M. (2016). FPGA
based architecture of extensive cancellation
algorithm (ECA) for passive bistatic radar
(PBR). Microprocessors and Microsystems,
41, 56-66.

22. Jarrah, A., & Jamali , M. M. (2015).
Recon f i gu rab le FPGA/GPU-based
architecture of block compressive sampling
matching pursuit algorithm. Journal of
Circuits, Systems and Computers, 24(04),
1550055.

23. Al Bataineh, A., Jarrah, A., & Kaur, D.
(2019). High-speed FPGA-based of the
particle swarm optimization using HLS tool.
International Journal of Advanced Computer
Science and Applications, 10(5)

24. Jarrah, A., Haddad, B., Al-Jarrah, M. A.,
&Obeidat, M. B. (2017). Optimized parallel
architecture of evolutionary neural network
for mass spectrometry data processing.
International Journal of Modeling, Simulation,
and Scientific Computing, 8(01), 1750016.

25. Jarrah, A., Jamali, M. M., Hosseini, S.
S. S., Astola, J., & Gabbouj, M. (2015).
Parralelization of non-linear & non-Gaussian
Bayesian state estimators (Particle filters).
In 2015 23rd European Signal Processing
Conference (EUSIPCO) (pp. 2506-2510).
IEEE.

26. Jarrah, A., & Jamali, M. M. (2013, November).
Software tool for FPGA based MIMO radar
applications. In 2013 Asilomar Conference
on Signals, Systems and Computers (pp.
1792-1795). IEEE

