Views 
   PDF Download PDF Downloads: 1160

 Open Access -   Download full article: 

An Integer solution in Intuitionistic Transportation Problem with Application in Agriculture

M. A. Lone, S. A. Mir and M. S. Wani

Division of Agric. Stat. SKUAST-K

DOI : http://dx.doi.org/10.13005/ojcst/10.01.03

Article Publishing History
Article Received on : February 11, 2017
Article Accepted on : March 17, 2017
Article Published : 27 Mar 2017
Article Metrics
ABSTRACT:

In this paper, we investigate a Transportation problem which is a special kind of linear programming in which profits; supply and demands are considered as Intuitionistic triangular fuzzy numbers. The crisp values of these Intuitionistic triangular fuzzy numbers are obtained by defuzzifying them and the problem is formulated into linear programming problem. The solution of the formulated problem is obtained through LINGO software. If the obtained solution is non-integer then Branch and Bound method can be used to obtain an integer solution.

KEYWORDS: Transportation Problem; Intuitionistic triangular fuzzy numbers; Maximized profit; Branch and Bound method; optimal allocation and LINGO

Copy the following to cite this article:

Lone M. A, Mir S. A, Wani M. S. An Integer solution in Intuitionistic Transportation Problem with Application in Agriculture. Orient.J. Comp. Sci. and Technol;10(1)


Copy the following to cite this URL:

Lone M. A, Mir S. A, Wani M. S. An Integer solution in Intuitionistic Transportation Problem with Application in Agriculture. Orient.J. Comp. Sci. and Technol;10(1). Available from: http://www.computerscijournal.org/?p=5103


Introduction

Transportation problem is a spectial kind of linear programming problem in which goods are transported from a set of source to the set of destination subject to the supply and demands of the source and destinations. Hitchcock (1941) firstly introduced the Transportation Problem and after that it presented by Koopmans (1947). The first mathematical formulation of fuzziness was pioneered by Zadeh (1965). Orlovsky (1980) made a numerous attempts to explore the ability of fuzzy set theory to become a useful tool for adequate mathematical analysis of real world problems. Atanassov (1986) introduced Intuitionistic fuzzy sets as an extension of Zadeh’s notion of fuzzy set. Intuitionistic fuzzy set is a powerful tool in solving real life problems and has a greater influence in solving Transportation problems to find optimal allocation. A new method for solving Transportation problems with Intuitionistic triangular fuzzy numbers was proposed by Paul et.al (2014). A balanced Intuitionistic fuzzy assignment problem was solved by Kumar et al.,(2014) . Intuitionistic fuzzy Transportation problem has been studied by many authors and with different approaches have been proposed such as (Gani and Abbas  (2013), Hussain and Kuma (2012), Hakim (2012) and Pramila and Ultra(2014) etc) . Ranking and defuzzification methods based on area compensation fuzzy sets and systems can be found in Fortemps and Roubens (1996). Ranking of trapezoidal Intuitionistic fuzzy numbers was presented De and Das.(2012). In this paper, the transportation problem considered in which the profits, availability and requirement are Intuitionistic triangular fuzzy numbers. By defuzzifying, the profits, availability and requirements are converted into crisp values. The problem is formulated into Linear programming problem and solution is obtained through LINGO Software. If the obtained solution is non-integer then we round the non integer value to the nearest integer value. But sometimes in practical situation by rounding, we get a solution which may be infeasible or impractical. Thus instead of rounding the non integer solution to the nearest integer value we use Branch and Bound to obtain integer solution.  The assignment costs are converted into crisp values by defuzzifying with the accuracy function and the optimum solution is obtained by using Branch and Bound method.

Formula

Formula

Defuzzification

We define Accuracy function to defuzzify a given triangular Intuitionistic fuzzy number is 

Formula

Intuitionistic Fuzzy Transportation Problem (IFTP):

Formula

Formula

Table 1: In tabular form we can write

Table 1: In tabular form we can write


 
Click here to View table

 

Numerical Illustration

Formula

Table 2

Table 2 



Click here to View table

 

Table 3

Table 3 



Click here to View table

 

The above problem can be formulated as a linear programming problem (LPP) and the solution can be obtained from the following given program in LINGO software.

MODEL:

SETS:

grounds: area;

crops: mrcsa;

LINKS(grounds ,crops ): PROFIT, VOLUME;

ENDSETS

DATA:

grounds = P1 P2 P3 P4 P5;

crops = Rice Maize Wheat ;

area = 4.50 6.75 17.25 4.50 9.0;

mrcsa = 16.25 4.50 21.25;

PROFIT = 14.0 02.75 12.50

10.0 05.13 09.75

07.0 10.00 14.62

05.1 06.00 07.00

10.0 13.00 10.37;

ENDDATA

MAX = @SUM( LINKS( I, J):

PROFIT( I, J) * VOLUME( I, J));

@FOR( crops( J):

@SUM( grounds( I): VOLUME( I, J)) =

mrcsa( J));

@FOR( grounds( I):

@SUM( crops( J): VOLUME( I, J)) <=

area( I));

END

Global optimal solution found.

Objective value:                              516.7450

Infeasibilities:                              0.000000

Total solver iterations:                             8

Model Class:                                        LP

Total variables:                     15

Nonlinear variables:                  0

Integer variables:                    0

Total constraints:                    9

Nonlinear constraints:                0

Total nonzeros:                      45

Nonlinear nonzeros:                   0

Variable           Value        Reduced Cost

AREA( P1)        4.500000            0.000000

AREA( P2)        6.750000            0.000000

AREA( P3)        17.25000            0.000000

AREA( P4)        4.500000            0.000000

AREA( P5)        9.000000            0.000000

MRCSA( RICE)        16.25000            0.000000

MRCSA( MAIZE)        4.500000            0.000000

MRCSA( WHEAT)        21.25000            0.000000

PROFIT( P1, RICE)        14.00000            0.000000

PROFIT( P1, MAIZE)        2.750000            0.000000

PROFIT( P1, WHEAT)        12.50000            0.000000

PROFIT( P2, RICE)        10.00000            0.000000

PROFIT( P2, MAIZE)        5.130000            0.000000

PROFIT( P2, WHEAT)        9.750000            0.000000

 PROFIT( P3, RICE)        7.000000            0.000000

PROFIT( P3, MAIZE)        10.00000            0.000000

PROFIT( P3, WHEAT)        14.62000            0.000000

PROFIT( P4, RICE)        5.100000            0.000000

PROFIT( P4, MAIZE)        6.000000            0.000000

PROFIT( P4, WHEAT)        7.000000            0.000000

PROFIT( P5, RICE)        10.00000            0.000000

PROFIT( P5, MAIZE)        13.00000            0.000000

PROFIT( P5, WHEAT)        10.37000            0.000000

VOLUME( P1, RICE)        4.500000            0.000000

VOLUME( P1, MAIZE)        0.000000            14.25000

VOLUME( P1, WHEAT)        0.000000            3.400000

VOLUME( P2, RICE)        6.750000            0.000000

VOLUME( P2, MAIZE)        0.000000            7.870000

VOLUME( P2, WHEAT)        0.000000            2.150000

VOLUME( P3, RICE)        0.000000            5.720000

VOLUME( P3, MAIZE)        0.000000            5.720000

VOLUME( P3, WHEAT)        17.25000            0.000000

VOLUME( P4, RICE)       0.5000000            0.000000

VOLUME( P4, MAIZE)        0.000000            2.100000

VOLUME( P4, WHEAT)        4.000000            0.000000

VOLUME( P5, RICE)        4.500000            0.000000

VOLUME( P5, MAIZE)        4.500000            0.000000

VOLUME( P5, WHEAT)        0.000000            1.530000

Row    Slack or Surplus      Dual Price

  1. 516.7450            1.000000
  2. 0.000000            5.100000
  3. 0.000000            8.100000
  4. 0.000000            7.000000
  5. 0.000000            8.900000
  6. 0.000000            4.900000
  7. 0.000000            7.620000
  8. 0.000000            0.000000
  9. 0.000000            4.900000

Since the optimal allocation is non integer. In real life problems sometime rounding non integer solution to the nearest integer value may give us infeasible or misleading solutions. So instead of rounding non integer solution to the nearest integer value we use Branch and Bound method to get an integer solution. Therefore the integer allocation is

X11=    VOLUME( P1, RICE)         4.000000           

X12=    VOLUME( P1, MAIZE)        0.000000           

X13=    VOLUME( P1, WHEAT)        0.000000           

X21=    VOLUME( P2, RICE)         6.000000           

X22=    VOLUME( P2, MAIZE)        0.000000           

X23=    VOLUME( P2, WHEAT)        0.000000           

X31=    VOLUME( P3, RICE)         0.000000           

X32=    VOLUME( P3, MAIZE)        0.000000           

X33=    VOLUME( P3, WHEAT)        17.00000           

X41=    VOLUME( P4, RICE)         0.0000000          

X42=    VOLUME( P4, MAIZE)        0.000000           

X43=    VOLUME( P4, WHEAT)        4.000000           

X51=    VOLUME( P5, RICE)         3.000000           

X52=    VOLUME( P5, MAIZE)        6.000000           

X53=    VOLUME( P5, WHEAT)        0.000000           

And  total maximized profit=$ 493.1450

Conclusion

In this paper a well known transportation problem and its application in agriculture have been studied. By defuzzifying, the IF profits, availability and requirement are converted into crisp values and the optimal solution shown above is obtained by formulated programme in LINGO using integer programming technique.

References

  1. Atanassov. K.(1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20: 87-96.
    CrossRef
  2. De, P. K and Das, D. 2012. Ranking of trapezoidal intuitionistic fuzzy numbers. 12th International Conference on Intelligent Systems Design and Applications (ISDA);184 – 188.
    CrossRef
  3. Fortemps. P and.Roubens .M.(1996 ). “Ranking and defuzzification methods based area compensation”.fuzzy sets and systems 82: 319-330.
  4. Gani. A. N and Abbas.S .(2013). A new method for solving intuitionistic fuzzy transportation problem,. Applied Mathematical Sciences, 7(28) : 1357 – 1365.
    CrossRef
  5. Hakim. M. A(2012). An alternative method to Find Intial basic Feasible Solution of transportation Problem.Annals of Pure and Applied Mathematics,1(2):203-209.
  6. Hitchcock, F. L. (1941).The distribution of product from several source to numerous localities. J. Maths. Phy.20: 224-230
    CrossRef
  7. Hussain. R. J.  and Kuma, P.S.(2012). Algorithm approach for solving intuitionistic fuzzy transportation problem, Applied Mathematical Sciences, 6 (80):3981- 3989.
  8. Koopman, T.C.(1947). Optimum utilization of transportation system. Proc. Intern. Statics. Conf. Washington D.C.
  9. Kumar. P. S. and Hussain.P.S. (2014) A method for solving balanced Intuitionistic fuzzy assignment problem, International Journal of Engineering Research and Applications, 4(3) : 897-903.
  10. Mitchell. N.H.(2011). Mathematical Applications in Agriculture, 2nd ed. London: Cengage Learning.
  11. Orlovsky, S. A. 1980. On Formulation Of A General Fuzzy Mathematicakl programming  problem. Fuzzy Sets and Systems, 3: 311-321
    CrossRef
  12. Paul, A.R.J., Savarimuthu . S. J and Pathinathan.T. (2014). Method for solving the transportation problem using triangular Intuitionistic fuzzy number, International Journal of Computing Algorithm, 3 : 590-605.
  13. Pramila. K and Ultra. G.(2014). Optimal Solution of an Intuitionistic Fuzzy Transportation Problem. Annals of Pure and Applied Mathematics,8(2):67-73
  14. Thornley. J, and France.J. (2006). Mathematical Models in Agriculture, 2nd ed., Wallingford, Oxfordshire: CABI.
  15. Zadeh,L.A.(1965). Fuzzy Sets.  Information and Control.8 :338-353.
    CrossRef

 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.