A New Approach to solve Knapsack Problem

S.P. SAJJAN1, RAVIKUMAR ROOGI1, VIJAYKUMAR BADIGER1 and SHARANU AMARAGATTI2

1Department of Computer Science, KU, Dharwad, India.
2Softwar Engineer, Consonant Consulting India Ltd Pvt Bangalore, India.

(Received: July 10, 2014; Accepted: August 10, 2014)

ABSTRACT

This paper introduces a well known NP-Complete problem called the Knapsack Problem, presents several algorithms for solving it, and compares their performance. The reason is that it appears in many real domains with practical importance. Although it’s NP-Completeness, many algorithms have been proposed that exhibit impressive behaviour in the average case. This paper introduce A New approach to solve a Knapsack Problem. An overview of the previous research and the most known algorithms for solving it are presented. The paper concludes with a practical situation where the problem arises.

Key words: Knapsack, Linear Programming, Algorithm.

INTRODUCTION

Many people wants to fill up his knapsack, selecting among various objects. Each object has a particular weight and obtains a particular profit. The knapsack can be filled up to a given maximum weight. How can he choose objects to fill the knapsack maximizing the obtained profit?

A naïve approach to solve the problem could be the following:

Select each time the object which has the highest profit and fits in the knapsack, until you can’t choose any more objects.

Unfortunately, this algorithm gives a good(or bad) solution which, in general isn’t optimal. This is the case also if you try other rules, such as "choose the object with the highest ratio profit/weight". As a result, you may not do anything else, other than testing all the possible subset of chosen objects. Note that for n objects there are 2^n such subsets.

The simple problem above is in fact an informal version of an important and famous problem called The Knapsack Problem. This paper studies the problem from the point of view of theoretical Computer Science.

The Problem

The Knapsack Problem belongs to a large class of problems known as Combinatorial Optimization Problem. In such problem, we try to “Maximize” (or “Minimize”) some “Quantity”, while satisfying some constraints. For example, the
Knapsack problem is to maximize the obtained profit without exceeding the knapsack capacity. In fact, it is a very special case of the well-known Integer Linear Programming Problem.

Definition
Knapsack problem is defined as "It is a greedy method in which knapsack is nothing but a bag which consists of n objects each objects an associated with weight and profit".

Objective: “To fill the knapsack to which maximum profits obtained”.

Formula:
Let \(m \) be the capacity of knapsack
Let \(X_i \) be the solution vector.

Maximise = \(\sum_{1 \leq i \leq n} P_i \cdot X_i \)
Subject to
\(\sum_{1 \leq i \leq n} W_i \cdot X_i \leq m \)

Constraints
\(0 \leq i \leq n \) & \(0 \leq X_i \leq n \)
Where, \(P_i \) & \(W_i \) are the profit & weight are positive Numbers
Equation (2) and (3) are satisfy the feasible solution i.e solution satisfy all the constraints
Equation (1) is used to maximise the profit then it given optimal solution. i.e Best solution among all feasible solution.

Algorithm: knapsack(m,n)
Purpose: Gready method to solve knapsack problem
Input: m, n
Output: \(X_i \rightarrow \)Solution vector

\{
 for i=1 to n
 \{
 \[X[i] = 0.0; \]
 \[U = m; \]
 for i = 1 to n
 \{
 \[if(w[i] > U) \]
 \[break; \]
 \[X[i] = 1.0; \]
 \[U = U- W[i]; \]
 \}
 \[if(i < n) \]
 \[X[i] = U/W[i]; \]
 \}
\}

Knapsack Problem
Problem No 1:
Given
\(n = 3 \)
\(m = 20 \)
\((P_1, P_2, P_3) = (25, 24, 15) \)
\((W_1, W_2, W_3) = (18, 15, 10) \)

Solution: Given problem can be solved by knapsack problem with Gready method as shown below
Given \(n = 3 \) then it has \((n+1)\) feasible solution
so given problem \(n \) has 3 then it contain \((n+1)\) i.e 4 solutions.
Out of 4 solutions we will solve given problem by using assumptions and algorithms.
Given problem can be solved by 2 assumptions and 2 algorithms based.

1. \((1/2, 1/3, 1/4) = 16.5 \)
2. \((1, 2/15, 0) = 20 \)
3. \((0, 2/3, 1) = 20 \)
4. \((0, 1, 1/2) = 20 \)

\(n = 3 \) Then \((n+1)\) Solution \(\rightarrow \) 4 solution

First solution: Based on Assumption
\(n = 4 \) 1, 2, 3, 4
Divede one by remaining numbers i.e 1/2 1/3 1/4
Calculate corresponding weight and profit
\(\sum_{1 \leq i \leq n} W_i \cdot X_i = (18*1/2 + 15*1/3 + 10*1/4) \)
= \((9 + 5 + 2.5) \)
=16.5
\(\sum_{1 \leq i \leq n} P_i \cdot X_i = (25*1/2 + 24*1/3 + 15*1/4) \)
= \((12.5 + 8 + 3.7) \)
=24.2

Second Solution: Based on Algorithm
Algorithm: knapsack(m,n)
\{
 for i = 1 to n
 \{
 \[X[i] = 0.0; \]
 \[U = m; \]
 for i = 1 to n
 \{
 \[if(W[i] > U) \]
 \[break; \]
 \[X[i] = W[i]; \]
 \}
 \}
\}
\begin{align*}
U &= U - W[i]; \\
\text{if}(i \neq n) \\
\{ \\
X[i] &= U/W[i]; \\
\}
\end{align*}

For given problem it check in algorithm then assign values

\begin{itemize}
\item X[1] = 1
\item X[2] = 2/15
\item X[3] = 0
\end{itemize}

Then calculate corresponding weight and profit

\begin{align*}
\Sigma_{1 \leq i \leq n} W_i X_i &= (1*18 + 2/15*15 + 0*10) \\
&= (18 + 2 + 0) \\
&= 20
\end{align*}

\begin{align*}
\Sigma_{1 \leq i \leq n} P_i X_i &= (0*25 + 1*24 + 1/2*15) \\
&= (24+7.5) \\
&= 31.5
\end{align*}

Third Solution: Based on Assumption

\begin{itemize}
\item Interchange the right most element to left most position & left most element to right most position
\item In second middle element can be find take numerator of that element then we get values for third solution
\end{itemize}

\begin{align*}
[1/2, 1/3, 1/4] \\
[1, 2/15, 0] \\
[0, 2/3, 1]
\end{align*}

\begin{itemize}
\item X[1] = 0
\item X[2] = 2/3
\item X[3] = 1
\end{itemize}

Calculate corresponding weight & profit

\begin{align*}
\Sigma_{1 \leq i \leq n} W_i X_i &= (0*18 + 2/3*15 + 1*10) \\
&= (10+10) \\
&= 20
\end{align*}

\begin{align*}
\Sigma_{1 \leq i \leq n} P_i X_i &= (0*25 + 2/3*24 + 1*15) \\
&= (16+15) \\
&= 31
\end{align*}

Fourth Solution: Based on algorithms

For X[1] put 0 as value because its value is already find in second solution then start with X[2].

\begin{itemize}
\item X[1] = 0
\item X[2] = 1
\item X[3] = 5/10 = 1/2
\end{itemize}

Then calculate corresponding weight and profit

\begin{align*}
\Sigma_{1 \leq i \leq n} W_i X_i &= (0*18 + 1*15 + 1/2*10) \\
&= (15+5) \\
&= 20
\end{align*}

\begin{align*}
\Sigma_{1 \leq i \leq n} P_i X_i &= (0*25 + 1*24 + 1/2*15) \\
&= (24+7.5) \\
&= 31.5
\end{align*}

Based on Second method (Based on Algorithm) we got profit 28.2, but according to our Assumption we got profit 31, this is better solution as compare second method, unfortunately Third method not an optimal solution. If you apply again Algorithm based on second method assumption we got profit 31.5, Fourth solution answer near to our Third Assumption method.

Among Four feasible solutions the solution 4 obtained the maximum profit so that fourth solution is Optimal Solution for this problem.

Analysis

\begin{itemize}
\item If the items are already sorted into decreasing order of \(V_i / W_i\), then time complexity is \(O(n)\).
\item Therefore Time Complexity including sort is \(O(n \log n)\)
\end{itemize}

CONCLUSION

In this paper we proposed an algorithm to solve the knapsack problem. This algorithm originates from a well-known continued fraction method and runs in polynomial time of the input length. We conjecture that for any fixed \(n>2\), the knapsack problem with \(n\) variables may be solved in polynomial time. The proof seems difficult and generalization of the method used in this paper doesn’t seem to work. It is hoped that the modest beginning presented in this paper will draw the attention of more researchers and will bring about the eventual solution of this problem.
REFERENCES

6. The 0-1 Knapsack Problem An Introductory Survey Michail G. Lagoudakis.