
ORIENTAL JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY

www.computerscijournal.org

ISSN: 0974-6471
June 2017,

Vol. 10, No. (2):
Pgs. 467-473

An International Open Free Access, Peer Reviewed Research Journal
Published By: Oriental Scientific Publishing Co., India.

Component Based Software Development Life
Cycle Models: A Comparative Review

PREETI GULIA and PALAk*

1,2 Department of Computer Science and Applications, M.D. University, Haryana, India
*Corresponding author E-mail:palak.aug6@gmail.com

http://dx.doi.org/10.13005/ojcst/10.02.30

(Received: May 09, 2017; Accepted: June 01, 2017)

ABSTRACT

 The development of high quality software is the need of current technology driven world.
Component Based Software Engineering (CBSE) has provided a cost effective, fast and modular
approach for developing complex software. CBSE is mainly based on the concept of reusability. Apart
from these CBSE has several advantages as well as challenges which are summarized in this paper.
Large and complex software development requires management of reusable components and can
be selected from component repository and assembled to obtain a working application. Development
of components and their assembly is different from traditional softwares which leads to the need of
new development paradigms for Component Based Systems (CBS). Software development life cycle
(SDLC) provides planned and systematic arrangement of activities to be carried out to deliver high
quality products within time and budget. This paper presents a comparative study of component
based software development life cycle models with their strengths and weaknesses.

keywords: Component; CBSE; SDLC, Software Engineering, Development Lifecycle.

INTRODUCTION

 Software development process has
evolved a long way from traditional waterfall
model to highly manageable component oriented
software. Initially softwares were developed from
scratch using functional (procedural) approach. It
was a top-down approach which breaks functional
requirements into sub functions and building a
program for functionality. Later a huge change
in software industry came with the introduction
of object oriented paradigms in early 1990s.

Object Oriented Programming System (OOPS)
provides a great control over data. Various features
like abstraction, encapsulation, polymorphism,
inheritance etc. were revolutionary advantages for
software industry. They offer a bottom up approach
for software development where the main focus was
on data and entities rather than on functions. But
some problems which are not addressed in OOPS
were solved in AOSP (Aspect Oriented Software
Programming) such as cross cutting concerns.
Later Component Based Software Engineering
(CBSE) evolved which focuses on reusability of

468 GULIA & PALAk, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 467-473 (2017)

the previous effort done to build components. Each
component represents a set of services which
can be assembled with other components. Thus
collection of such interactive components builds
the whole software. Later we can add, replace
or modify components according to our needs.
This helps in reducing software crisis and delivers
robust software products with faster delivery and
reduced cost. Fig. 1 shows the evolution of SDLC
that depicts how practitioners have switched to
software modularity and software development is
becoming more cohesive and scalable.

 Component Based Software Engineering
(CBSE) has gained popularity in last few decades
because of increasing demand of complex and up
to date software. It has provided a cost effective,
fast and modular approach for developing complex
software with reduced delivery time. Actively reusing
designs or code allows taking advantage of the
investment made on reusable components.

 A component is defined by many
researchers in many ways. According to Szyperski-
”A software component is a unit of composition
with contractually specified interfaces and explicit
context dependencies only. A software component
can be deployed independently and is subject to
composition by third party”1.

 So we can say that a component is a black
box, reusable software implementation that can be
executed and interacts using well defined interfaces.
Components are built to be reusable which makes
development of further applications with similar
functionalities much easier. Components are
heterogeneous in nature in terms of programming

languages and platform. Component based
architecture provides flexibility to update or modify
components and choose the best in class2.

 Organization of rest of the paper is as
follows: Section II summarizes advantages of using
CBSE for complex software development. Apart
from advantages, CBSE introduces new challenges
for the developers which are given in Section III in
this paper. In Section IV and V, CBSE development
life cycle models are given summarized.

Advantages of CBSE
 With the evolution of CBSE, it is easy to
manage and update large and complex software.
While object oriented paradigms are not sufficient
for present day software, CBSE provides a
promising solution with following advantages as
shown in Fig. 2:

Fig. 1: Evolution of CBSE

Fig. 2: Advantages of CBSE

Scalability
 omponents can be easily added, removed
or updated. CBSE systems are highly scalable as
more and more components with new functionality
can be added easily.

Enhanced Quality
 As cer tification process is already
completed for the developed components so the

469GULIA & PALAk, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 467-473 (2017)

final software is readily predicted to be of good
quality. Several models have been proposed to
evaluate quality in such systems3,4.

Reduced Cost & Schedule
 As the components are reused, the cost
and the time needed to develop new components
are saved. The cost of component development is
recovered after five successive reuses.

Customization and Flexibility
 CBSE provides a set of adaptable
components with predefined architecture.
Application developers can purchase them from
third party and customize and assemble them
according to their specific requirements.

Increased Maintainability
 CBS are more maintainable as it is easy to
replace faulty components with their alternatives5.

Reduced Risk
 Risk of software failure is reduced because
of availability of various alternatives for a component
with similar functionality. The advantages from
CBSE are not limited to those described in above
section. Several other inherent advantages are
there for the developer as well as the user which
makes CBSE a right choice for the future software
products.

CBSE Challenges
 Apart from advantages, CBSE introduces
new challenges for the developers. Component
based software products are completely dependent
on efficient reusability and interaction between the
heterogeneous components. Although the field of
CBSE is heavily researched over last two decades
but still there are some challenges6,7 which the
practitioners have to face. Some of them are listed
below:

Heterogeneity of Components
 Components are heterogeneous in terms
of programming language, platform, data structure,
naming conventions etc. They are developed by
third party at different platforms under different
project plans. Any internal error in the component
can lead to its failure leading to overall system

failure and cannot be easily corrected due to the
heterogeneous nature of components.

Optimal Component Selection
 A promising and optimal set of components
should be selected from component pool after
system analysis and requirement engineering.
Component selection is NP (Non – Deterministic
Polynomial) hard problem which requires a lot of
effort and soft computing based approaches. This
has been an attractive research area for many
researchers8,9.

Expensive and Inadequate Component
Testing
 Component testing is an expansive
process as it involves construction of test drivers
and stubs. Building and configuring separate stub
and drivers for each component is a cumbersome
task for testers. All possible combinations of
available components are very difficult to test.

Complex Interface Specification
 Each component has some interfaces
through which it interacts with other components.
Interface specifications are the entry points for
defects. They need to be tested thoroughly. But
the problem arises when these specifications are
complex.

Continuous Versioning
 Co-existence of different versions of
a component with slight modifications creates
challenge for testers to test all possible versions.

Improper Working due to Application Level
Changes
 Changes on the application or system level
may affect overall working of CBS as the lifecycle of
components and the application in which they are
used are separate. There is a risk that this change
introduced will cause system failure6.

Component Configuration and Certification
 A component must have standard
configuration and must have undergone well
established certification policy. This develops
faith in stakeholders of CBS. But there is a lack of
procedures and standards for the same6.

470 GULIA & PALAk, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 467-473 (2017)

Component Based Software Development Life
Cycle Models
 As stated earlier, CBSE is an approach
of developing complex software applications by
assembling reusable components from a variety of
sources into a well-defined architecture. Traditional
waterfall and iterative life cycle development models
are not sufficient for CBS. So many researchers
proposed various Component Based Software
Development Life Cycle models over years.
This section briefly summarizes some of these
models.

The Y Model
 Y model was proposed in 2005 by Luiz
Fernando Capretz10. Considering the concept of
reusability, Y model separate the development
of components. This model allows iteration and
overlapping of stages. The model resembles the
letter Y in English from where the name Y model
came in existence. The model has three branches
showing the main phases of development. Various
phases are shown in Fig. 3. At intersection of
three branches is the assembly phase. Assembly
of reusable components can be done after
domain engineering and frame working where
reusable components and their interrelationships
are identified in terms of application vocabulary.
Parallel to domain engineering, system analysis
and design phases are carried out. The results of
system analysis and designing phase are useful

for adapting the selected components according
to the system design requirements. Next step is
to assemble and implement the system that is
composed of various reusable components glued
together in a framework. Component testing and
system testing is also an important phase to assure
quality of final product.

Fig. 3: Y Model [10]

Fig. 4: V Model for CBD [11]

The V Model
 Ivica Crnkovic (2005) et. al. in11 distinguished
evolutionary development models from that of
traditional sequential models. They proposed a
modified V model considering two aspects i.e.
“component development” and “developing system
form components”. They identified that component
based development process is different from
non-component based development and found
the new problems that arise due to component
selection and assembly. Fig. 4 shows the modified
V model in which the unit design phase is replaced
by component selection phase. Component
development phase is independent of developing
system from components and can be carried out in
parallel. The developed reusable components are
stored in component pool from where they can be
selected after analysis and design phase is over.

The X Model
 Fig. 4 shows X model that was proposed in
200812,13. The model contains four arms arranged in
the shape of letter X of English alphabet and each
arm represents different perspective of development.

471GULIA & PALAk, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 467-473 (2017)

At the intersection of these four arms is the Testable
Component Repository (TCR). The upper left arm
specifies the stages for development of components
for reuse. Here the components are developed from
scratch and stored in component repository. The
lower left and lower right arms specify stages for
development after modification and development
without modifications respectively. Both arms select
components from component repository and finally
assemble them for Component based software
development that is represented by upper right arm
of the X model. X model provides scope for system
development with component modification as well
as without component modification with is shown
in lower left and lower right arm of X model in Fig.
5.

CBSD Dual Life Cycle Model
 Jason et. al. in14 proposed a dual life
cycle model for CBD. This model coarsely divides

the whole process into two parts i.e. component
development and system development. The
individual phases of each part are shown in Fig.
6. They also provided tenets of design science
followed in successive phases of development.
The component development is often carried out
by third party commercial developers and they are
developed in such a way that their architecture is
well defined in terms of required inputs and outputs
for proper functionality with other components.
Component fabrication deals with testing the
component in external environment to check its
reusability. System development is divided into
sub-phases namely: Requirement analysis, system
and sub-system architecture, Component selection,
cataloging and retrieval and finally assembly of
components in a defined architecture is carried out.
Component selection phase of system development
is directly linked to component development part.

Fig. 5: X Model [12] Fig. 6: CBSD Dual Life Cycle Model [14]

Table 1: Various Cbs Development
Models And Their Focus Area

CBD Model Year Focus Area

Y Model [10] 2005 Reusability and
 Parallel Development
V Model [11] 2005 Component Development
 and Component Selection
X Model [12] 2008 Component Development, System
 Development With And
 Without Component Modification
CBSD Dual Life 2009 Separation Between Component
Cycle Model [14] Development And System Development
knot Model [15] 2011 Reusability, Modularity, Risk Analysis
W Model [16] 2011 Verification And Validation, Separate
 Component And System Development.

472 GULIA & PALAk, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 467-473 (2017)

Fig. 7: knot Model [15]

Fig. 8: W Model [16]

This model promises the separation between the
two types of development but lacks the concern
for component modification and overall system
verification and validation.

The knot Model
 In 2011, knot model15 came into existence
which was focused towards reusability, modularity
and risk analysis. Fig. 7 shows the main phases
and sub-phases of knot model. The main phases
are: Development of New Component, Modification
of Existing Component and Component Based

Software Development. Out of these phases,
modification of existing components is an iterative
phase which deals with selecting the component
from component pool, adapting and testing it
according to system architecture and receiving
feedback. The phase is repeated unless the
selected component is fit for being assembled in the
defined component framework. The efficiency of this
model depends on the powerful implementation of
Reusable Component Pool which is the pillar for all
the phases. This model is easy to understand but
selecting the appropriate component from reusable
component pool is the most critical task on which
the overall quality of the final product depends.

W Model
W model is a combination of two V models as shown
in Fig. 816. The left hand side represents component
life cycle and the right hand side represents system
lifecycle. It was proposed in 2011 and mainly
focuses on Verification and Validation (V & V).The
authors followed the standard CBD process and
separated the life cycle of component development
from system development. Component selection
and adaptation step is the connecting link between
two V models. V & V is considered at three levels
in this model i.e. Component level, Compositional
level and finally System level.

Summary of Various CBD Models
 This section summarizes of all the models
proposed for CBD on the basis of their focus area
given in Table 1. This table clearly depicts that the
aspect of reusability is of prime concern as depicted

by Y and knot Model. The second aspect that has
got more attention is separation of development
process of components from development of final
system. Selection of components is also focused
upon by many development models.

CONCLUSION

 Complexity of software is increasing day
by day in this era of technology. Fast and responsive
systems rely on their underlying software which in
turn relies on the robustness of development phases.
So SDLC is the pillar for system performance and
efficiency. With the evolution of component based
software development paradigm a number of SDLC
models has been proposed over time. This paper
summarizes some important CBS development
models such as V Model, Y Model, X Model, Dual
Model, knot Model and W model. Their main focus
areas are discussed. One common aspect that
is concluded from this study is that each model
separates the development of component from
the development of system. Moreover, selection of
appropriate components from component pool is
still an open issue in all the models.

473 GULIA & PALAk, Orient. J. Comp. Sci. & Technol., Vol. 10(2), 467-473 (2017)

REFERENCES

1. Szyperski C., Component Software-Beyond
Object -Oriented Programming, Addison-
Wesley, 1998.

2. Crnkovic Ivica, and Magnus Larsson.
“ C o m p o n e n t - B a s e d S o f t w a r e
Engineering-New Paradigm of Software
Development.” Invited talk and report,
MIPRO, pp- 523-524, 2001.

3. Prasenjit Banerjee, Anirban Sarkar, “Quality
Evaluation Framework for Component Based
Software” In Proceedings of the Second
International Conference on Information and
Communication Technology for Competitive
Strategies (ICTCS ’16). ACM, New York, NY,
USA, Article 17, 6 pages. 2016. DOI: http://
dx.doi.org/10.1145/2905055.2905223

4. Gaurav kumar and Pradeep kumar Bhatia,
“Neuro-Fuzzy Model to Estimate & Optimize
Quality and Performance of Component
Based Software Engineering” SIGSOFT
Software Eng. Notes 40, 2 (April 2015), pp.
1-6.

5. Tassio Vale, Ivica Crnkovic, Eduardo
Santanade Almeida, Paulo Anselmo da
Mota Silveira Neto, Yguaratã Cerqueira
Cavalcantic, Silvio Romero de Lemos Meira,
“Twenty-Eight Years of Component Based
Software Engineering”, The Journal of
Systems and Software, 111, pp. 128–148,
2016.

6. Ivica Crnkovic, “Component-Based Software
Engineering — New Challenges in Software
Development”, Journal of Computing and
Information Technology - CIT 11, 3, pp.
151–161, 2003.

7. Deepti Negi, Yashwant Singh Chauhan, Priti
Dimri, Aditya Harbola. “An Analytical Study
of Component-Based Life Cycle Models:
A Survey”, In Proceedings of International
Conference on Computational Intelligence
and Communication Networks (CICN),
2015.

8. Vinay, M. k., Johri, P., “W-Shaped Framework

for Component Selection and Product
Development Process”, World Applied
Sciences Journal, 31(4), pp. 606-614,
2014.

9. Rakesh Garg, R. k. Sharma, kapil Sharma,
“Ranking and selection of commercial
off-the-shelf using fuzzy distance based
Approach”, Decision Science Letters, pp.
201–210, 2016.

10. Luiz Fernando Capretz, “Y: A New
Component-Based Software Life Cycle
Model”, Journal of Computer Science (1),
pp:76-82, 2005.

11. Ivica Crnkovic, Stig Larsson, Michel
Chaudron, “Component-based Development
Process and Component Lifecycle”, Journal
of Computing and Information Technology -
CIT 13, 2005, 4, 321-327.

12. Gill N. S., Tomar P, “X Model: A New
Component-Based Model”, MR International
Journal of Engineering and Technology, Vol.
1, No. 1 & 2, 2008.

13. Nasib Singh Gill and Pradeep Tomar,
“Modi f ied Development Process of
Component-Based Software Engineering”,
ACM SIGSOFT Software Engineering Notes,
March 2010, Volume 35 Number 2.

14. Jason H. Shar p, Sher r y D. Ryan,
“Component-Based Software Development:
Life Cycles and Design Science-Based
Recommendations”, Proceedings of the
Conference on Information Systems Applied
Research, Washington, DC, 2009.

15. Rajender Singh Chhillar, Parveen kajla, “A
New - knot Model for Component Based
Software Development”, International
Journal of Computer Science Issues, Vol.
8, Issue 3, No. 2, pp. 480-484, May 2011.

16. kung-kiu Lau, Faris M. Taweel and Cuong M.
Tran, “The W Model for Component-based
Software Development”, 37th EUROMICRO
Conference on Software Engineering and
Advanced Applications, IEEE, pp.47 – 50,
2011.

